SUSY parameter determination at LHC and ILC

Snowmass, 23/08/05 Dirk Zerwas LAL Orsay On behalf of Philip Bechtle, Klaus Desch, Rémi Lafaye, Tilman Plehn, P.Wienemann SLAC, Freiburg, CERN, MPI-Munich, Freiburg

- Introduction
- SUSY measurements
- Reconstruction of the
- fundamental parameters
- Conclusions

Introduction

FITTINO (P. Bechtle, K. Desch, P. Wienemann and SFITTER (R. Lafaye, T. Plehn, D. Z.): tools to determine supersymmetric parameters from measurements

The workhorses:

- Mass spectra generated by SOFTSUSY, SPHENO, SUSPECT
- Branching ratios by MSMLIB, SPHENO
- e+e- cross sections by SPHENO
- NLO proton cross sections by Prospino2.0

More details on technique etc: talk by Philip Bechtle on Wednesday

Beenakker et al

Models:

- MSSM (minimal supersymmetric extension SM)
- mSUGRA (minimal supergravity)
- GMSB
- AMB
- NMSSM

SPS1a and SPA1

 $m_0 = 100 GeV m_{1/2} = 250 GeV A_0 = -100 GeV tan\beta = 10 sign(\mu) = +$ favourable for LHC and ILC (Complementarity)

Mass determination for 300fb⁻¹ (thus 2014) LHC: Toy MC from edges, thresholds to masses

Polesello et al: use of χ_1 from ILC (high precision) in LHC analyses improves the mass determination

	Mass, ideal	"LHC"	"LC"	"LHC+LC"
$\tilde{\chi}_1^{\pm}$	179.7		0.55	0.55
$\tilde{\chi}_2^{\pm}$	382.3	-	3.0	3.0
$\tilde{\chi}_1^0$	97.2	4.8	0.05	0.05
$\tilde{\chi}^0_2$	180.7	4.7	1.2	0.08
$\tilde{\chi}_3^0$	364.7		3-5	3-5
$\tilde{\chi}_4^0$	381.9	5.1	3-5	2.23
\tilde{e}_R	143.9	4.8	0.05	0.05
\tilde{e}_L	207.1	5.0	0.2	0.2
$\tilde{\nu}_e$	191.3	-	1.2	1.2
$\tilde{\mu}_R$	143.9	4.8	0.2	0.2
$\tilde{\mu}_L$	207.1	5.0	0.5	0.5
$\tilde{\nu}_{\mu}$	191.3	-		
$\tilde{\tau}_1$	134.8	5-8	0.3	0.3
$\tilde{\tau}_2$	210.7	-	1.1	1.1
$\tilde{\nu}_{\tau}$	190.4	-	-	_
\tilde{q}_R	547.6	7-12	-	5-11
\tilde{q}_L	570.6	8.7	-	4.9
\tilde{t}_1	399.5		2.0	2.0
\tilde{t}_2	586.3		-	
\tilde{b}_1	515.1	7.5	_	5.7
\tilde{b}_2	547.1	7.9	-	6.2
\tilde{g}	604.0	8.0	-	6.5
h^0	110.8	0.25	0.05	0.05
H^0	399.8		1.5	1.5
A^0	399.4		1.5	1.5
H^{\pm}	407.7	-	1.5	1.5

MSUGRA with masses

MSUGRA is a good testing ground for the techniques of fitting and sensitivity, but not more

Two separate questions:

- do we find the right point?
 - need and unbiased starting point
- what are the errors?

Start	SPS1a	LHC	ILC	LHC+ILC
m ₀	100	1TeV	1TeV	1TeV
m _{1/2}	250	1TeV	1TeV	1TeV
tanβ	10	50	50	50
A0	-100	0GeV	0GeV	0GeV

	SPS1a	ΔLHC	ΔILC	ΔLHC+ILC
m ₀	100	3.9	0.09	0.08
m _{1/2}	250	1.7	0.13	0.11
tanβ	10	1.1	0.12	0.12
A0	-100	33	4.8	4.3

- Convergence to central point
- errors from LHC %
- errors from ILC 0.1%
- LHC+ILC: slight improvement
- low mass scalars dominate m₀

 $Sign(\mu)$ fixed

Masses versus Edges (LHC)

			Errors		
Variable	Value (GeV)	Stat. (GeV)	Scale (GeV)	Total	
$m_{\ell\ell}^{max}$	77.07	0.03	0.08	0.08	
$m_{\ell \ell q}^{max}$	428.5	1.4	4.3	4.5	m
$m_{\ell q}^{low}$	300.3	0.9	3.0	3.1	0
$m_{\ell q}^{high}$	378.0	1.0	3.8	3.9	m _{1/2}
$m_{\ell \ell a}^{min}$	201.9	1.6	2.0	2.6	
$m_{\ell\ell b}^{min}$	183.1	3.6	1.8	4.1	tanβ
$m(\ell_L) - m(\tilde{\chi}_1^0)$	106.1	1.6	0.1	1.6	
$m_{\ell\ell}^{max}(\tilde{\chi}_4^0)$	280.9	2.3	0.3	2.3	A0
$m_{\tau\tau}^{max}$	80.6	5.0	0.8	5.1	
$m(\tilde{g}) = 0.99 \times m(\tilde{\chi}_1^0)$	500.0	2.3	6.0	6.4	
$m(\tilde{q}_R) - m(\tilde{\chi}_1^0)$	424.2	10.0	4.2	10.9	
$m(\tilde{g}) - m(\tilde{b}_1)$	103.3	1.5	1.0	1.8	
$m(\tilde{g}) - m(\tilde{b}_2)$	70.6	2.5	0.7	2.6	

		SPS1a	ΔLHC	ΔLHC
ī			masses	edges
	m ₀	100	3.9	1.2
	m _{1/2}	250	1.7	1.0
	tanβ	10	1.1	0.9
	A0	-100	33	20

 $Sign(\boldsymbol{\mu})$ fixed

• use of masses improves parameter determination!

• edges to masses is not a simple "coordinate" transformation:

Δm_0	Effect on ml _R	Effect on mll
1GeV	0.7/5=0.14	0.4/0.08=5

Similar effect for m_{1/2}

need correlations to obtain the ultimate precision from masses....

Total Error and down/up effect

Theoretical errors (mixture of c2c and educated guess):

Higgs	sleptons	Squarks,gluinos	Neutralinos, charginos
3GeV	1%	3%	1%

Higgs error: Sven Heinemeyer et al.

Including theory errors reduces sensitivity by an order of magnitude

	SPS1a	ΔLHC+ ILCexp	ΔLHC+ ILCth
m ₀	100	0.08	1.2
m _{1/2}	250	0.11	0.7
tanβ	10	0.12	0.7
A0	-100	4.3	17

	SPS1a	SoftSUSYup	Δ LHC+LC
m ₀	100	95.2	1.1
m _{1/2}	250	249.8	0.5
tanβ	10	9.82	0.5
A0	-100	-97	10

Running down/up

- spectrum generated by SUSPECT
- fit with SOFTSUSY (B. Allanach)
- central values shifted (natural)
- m₀ not compatible (to be checked)
- theoretical errors are important

SLHC+ILC

			Errors		SLHC
Variable	Value (GeV)	Stat. (GeV)	Scale (GeV)	Total	0.08
$m_{\ell\ell}^{max}$	77.07	0.03	0.08	0.08	13
$m_{\ell \ell \sigma}^{max}$	428.5	1.4	4.3	4.5	4.3
$m_{\ell q}^{low}$	300.3	0.9	3.0	3.1	3
$m_{\ell a}^{high}$	378.0	1.0	3.8	3.9	3.8
$m_{\ell\ell q}^{min}$	201.9	1.6	2.0	2.6	2.1
$m_{\ell\ell b}^{min}$	183.1	3.6	1.8	4.1	
$m(\ell_L) - m(\tilde{\chi}_1^0)$	106.1	1.6	0.1	1.6	2.1
$m_{\ell\ell}^{max}(\tilde{\chi}_4^0)$	280.9	2.3	0.3	2.3	0.5
$m_{\tau\tau}^{max}$	80.6	5.0	0.8	5.1	0.8
$m(\tilde{g}) - 0.99 \times m(\tilde{\chi}_1^0)$	500.0	2.3	6.0	6.4	1.0
$m(\tilde{q}_R) - m(\tilde{\chi}_1^0)$	424.2	10.0	4.2	10.9	1.8
$m(\tilde{g}) - m(\tilde{b}_1)$	103.3	1.5	1.0	1.8	6
$m(\tilde{g}) - m(\tilde{b}_2)$	70.6	2.5	0.7	2.6	5.3

SPS1a results LHC 300fb⁻¹

- SLHC 3000fb⁻¹
- Some improvement
- limitation: energy scale

	SPS1a	∆LHC before	ΔSLHC	ΔLHC+ILC	ΔSLHC+ILC
m ₀	100	1.2	0.7	0.08	0.07
m _{1/2}	250	1.0	0.6	0.11	0.11
tanβ	10	0.9	0.7	0.12	0.12
A0	-100	20	10	4.4	3.8

SLHC: • factor 2 improvement • SLHC+ILC marginal wrt LHC+ILC

1.1 1.1

MSUGRA beyond masses

Add the Higgs coupling measurements at LHC Add the cross section measurements at ILC Higgs branching ratios ILC

- improvement in A0 for LHC
- error reduction factor 2 in LHC+ILC

	SPS1a'	∆LHC edges	∆LHC all	ΔLHC+ILC
m ₀	70	1.2	1.4	0.07
m _{1/2}	250	1.7	1.0	0.07
tanβ	10	1.1	1.3	0.04
A0	-300	33	16	2.5

	LHC	ΔLHC	LHC+ILC	ΔLHC+ILC
m ₀	70.4	1.4	67.9	0.08
m _{1/2}	250.7	1.0	251.6	0.07
tanβ	9.9	1.3	11.5	0.04
A0	-298	16	-162	2.7
χ^2	0.5		3667	

- •Small deviation from MSUGRA:
- 1st and 2nd separated from 3rd
- L separated from R sfermions

clear separation of % deviations from MSUGRA via χ^2

Between MSUGRA and the MSSM

Start with MSUGRA, then loosen the unification criteria, less restricted model defined at the GUT scale:

• $tan\beta$, A0, $m_{1/2}$, $m_0^{sleptons}$, $m_0^{squarks}$, m_H^2 , μ

• experimental errors only

	SPS1a	LHC	ΔLHC
m_0^{sleptons}	100	100	4.6
$m_0^{squarks}$	100	100	50
m _H ²	10000	9932	42000
m _{1/2}	250	250	3.5
tanβ	10	9.82	4.3
A0	-100	-100	181

Sfitter-team and Sabine Kraml

• Higgs sector undetermined

- only h (m_Z) seen
- slepton sector the same as MSUGRA
 - light scalars dominate determination of m₀

• smaller degradation in other parameters, but still % precision

The highest mass states do not contain the maximum information in the scalar sector, but they do in the Higgs sector!

Beyond SPS1a at LHC

Fittino and Sfitter are not restricted to SPS1a

 $\label{eq:m0} \begin{array}{l} m_0 = 1400 \ GeV \ m_{1/2} = 180 \ GeV \\ A_0 = 700 \ GeV \ tan\beta = 51 \ \mu > 0 \\ Study \ motivated \ by: \\ Wim \ de \ Boer: \ astro-ph/0408272 \ (talk \ yesterday \ and \ this \ afternoon) \end{array}$

Dominant Processes at the LHC:

- $g+g
 ightarrow ilde{g}+ ilde{g}(50\%)$.
- $q + \bar{q} \rightarrow \tilde{\chi}_2^0 + \tilde{\chi}_1^{\pm}(20\%)$
- $f + \bar{f} \rightarrow \tilde{\chi}_1^- + \tilde{\chi}_1^+ (10\%)$

Tri-lepton signal promissing

Measurements:

- Higgs masses h,H,A
- mass difference χ_2 - χ_1
- mass difference g- χ₂ Sufficient for MSUGRA

 $\begin{array}{ll} m_0 &=\!\!1400 \pm (50-530) \text{GeV} \\ m_{1/2} &=\!\!180 \pm (2\text{-}12) \text{ GeV} \\ A_0 &=\!\!700 \pm (181\text{-}350) \text{ GeV} \\ \tan\beta &=\!\!51 \pm (0.33\text{-}2) \end{array}$

Uncertainties:

- b quark mass
- t quark mass
- Higgs mass prediction

Fit the low energy parameters

	LHC	LHC ILC LHC+ILC				
	LHC	L	C LHC+LC	SPS1a		
$\tan\beta$	10.22±9.1	10.26 ± 0.1	3 10.06±0.2	10		
M_1	102.45 ± 5.3	102.32±0.	1 102.23±0.1	102.2		
M_2	191.8±7.3	192.52±0.	7 191.79±0.2	191.8		
M_{3}	<u>578.67±15</u>	fixed 50	0 588.05±11	589.4		
MTL	tixed 5 00	197.6 8 ±1.	2 199.25+1.1	197.8		
M_{T_R}	129.03 ± 6.9	135.66±0.	3 133.35±0.6	1.35.5		
M_{μ_L}	198.7±5.1	198.7±0.	5 198.7±0.5	198.7		
M_{μ_R}	138.2±5.0	138.2±0.	2 13 8 .2±0.2	1.38.2		
M_{b_L}	198.7±5.1	198.7±0.	2 19 8 .7±0.2	1 98 .7		
M_{k_R}	138.2±5.0	138.2 ± 0.0	5 138.2±0.05	1.38.2		
M_{AB_L}	<u>498.3±110</u>	497.6±4.	4 521.9±39	501.3		
$M_{t_{g}}$	fixed 500	420±2.	1 411.73±12	420.2		
M_{b_p}	522.26±113	tixed 50	$0 504.35 \pm 61$	525.6		
M_{R_L}	550.72±13	fixed 50	0 553.31±5.5	553.7		
M_{L_R}	529.02±20	fixed 50	0 531.70±15	5.32.1		
M_{B_R}	526.21±20	fixed 50	0 528.90±15	529.3		
$M_{q_{1_L}}$	550.72±13	fixed 50	0 553.32±6.5	553.7		
M_{θ_R}	528.91±20	fixed 50	0 531.70±15	5.32.1		
M _{de}	526.2±20	fixed 50	1 528.90±15	529.3		
A_{τ}	fixed 0	-202.4±89.	5 352.1±171	-253.5		
A_t	-507.8±91	-501.95±2.1	Z -505.24±3.3	-504.9		
A_b	-784.7±35603	fixed	0 -977±12467	-799.4		
m _A	tixed 500	399.1±0.	9 <u>399.1±0.8</u>	399.1		
μ	345.21 ± 7.3	$344.34\pm2.$	3 344.36±1.0	344.3		

MSSM fit:

bottom-up approach

24 parameters at the EW scale

LHC or ILC alone:

• certains parameters must be fixed LHC+ILC:

• all parameters fitted

several parameters improved

Caveat:

- LHC errors ~ theory errors
- ILC errors << theory errors

⇒SPA project: improvement of theory predictions and standardisation

Conclusions

• SFitter (and Fittino) will be essential to determine SUSY's fundamental

parameters

- mass differences, edges and thresholds are more sensitive than masses
- the LHC will be able to measure the parameters at the level %
- ILC will improve by a factor 10
- LHC+ILC reduces the model dependence
- Small deviations from MSUGRA easily detected
- SLHC reduces errors by factor 2
- MSSM can be probed at both colliders with sensitivities to different regions of the parameter space