Leptons and Photons at the (S)LHC

Scott S. Snyder

Brookhaven National Laboratory

ILC Physics and Detector workshop

Snowmass, Aug 2005

Outline:

- Introduction.
- e/γ .
- Muons.

- Tau leptons.
- SLHC.
- Summary.

The LHC Environment

• Basic LHC parameters:

Beams	p imes p
C.O.M. energy	$14\mathrm{TeV}$
Luminosity	$10^{33}{ m cm}^{-2}{ m s}$ (low)
	$10^{34}\mathrm{cm}^{-2}\mathrm{s}$ (design)
Avg. interactions per crossing	23
Crossing period	$25\mathrm{ns}$

- The big detector design challenge is dealing with the large luminosity (and small bunch spacing and large pile-up).
- Example: muon systems designed to produce useful physics standalone at the highest luminosities, in case the inner tracking is degraded.
- There will be a period of low-luminosity running before high-luminosity running. Some detector capabilities may degrade at high luminosity (such as *b*-tagging).
- Two major, general-purpose pp detectors: ATLAS and CMS.

ATLAS

- Inner detector and solenoid contained within calorimeters.
- LAr/Pb (EM), LAr/Cu (forward had), and Fe/scintillator (central had) calorimetry.
- Large air-core toroid muon system.

- Major feature is the solenoid $13.5 \text{ m} \times 6 \text{ m}$ with a 4 T field. Calorimeters are contained within the solenoid.
- Muon chambers interspersed with iron flux return.
- Crystal PbWO₄ EM calorimeter. Cu/scintillator hadronic calorimetry.

e/γ Performance Requirements

- Set by benchmark physics processes.
- Z', W' searches require electron sensitivity up to 5 TeV.
- Should have sensitivity down to 1-2 GeV for $b \rightarrow e$.
- Resolution requirements set by $H \rightarrow \gamma \gamma$ channel.
 - Need mass resolution of $~\sim 1\%$.
 - Requires both good energy and angle measurements.
 - Also need very good γ /jet separation.
- Performance must not degrade unduly at the highest LHC luminosities.

- CMS: Mass resolution < 700 MeV.
- Mass peak from $H \rightarrow \gamma \gamma$ with $m_H = 130 \,\text{GeV} (100 \,\text{fb}^{-1})$:

• Gives 5σ significance for 30 fb^{-1} .

ATLAS e/γ measurement

- Pb/LAr sampling calorimeter.
- Accordion geometry.
- Presampler plus three longitudinal samplings; 22-33 X₀.
- Granularity: Strips: 0.003×0.1 , middle: 0.025×0.025 , back: 0.05×0.025 .
- Tracking: Pixels + Si strips (SCT) + straw tubes with transition radiation detection (TRT).

ATLAS LArEM test beam results

 $\sigma_E/E = a/\sqrt{E} \oplus b$. Goal: $a \sim 10\%$, b < 0.7%.

ATLAS e/γ ID

- Use hadronic leakage, longitudinal profile, transverse shape in middle sampling.
- Use narrow strips to reject π_0 .

• Can also use TRT information.

CMS e/γ measurement

- Fully active crystal EM calorimeter.
- ~ 80000 PbWO₄ crystals. Thickness $26X_0$ (22–23 cm). Granularity: 0.0175×0.0175 (barrel).
- Readout: avalanche photodiodes (barrel) and vacuum phototriodes (endcap).
- Tracking: pixels and Si strips. Calorimeters inside solenoid. Upstream material $\sim 1X_0$.
- Pb/Si strip preshower in endcaps.

CMS EM Test Beam Results

Conversions

- 20–30% of photons convert within the tracker.
- $\sim 80\%$ of those can be reconstructed. (Both expts.)
- Conversions after the tracker do not degrade resolution much.

Calibration

- CMS calibration scheme. Goal is to reduce constant term b to $\sim 0.5\%$.
- Precalibration via lab measurements gives $\sim 4\%$.
- φ uniformity: Intercalibration using min bias or jet triggers at start of running gives 2–3% precision with a few hours' data.
- $Z \rightarrow ee$ gives < 1% in \sim 1 day.
- Longer term: calibrate against inner detector using E/p from W → eν. Limited by of brem effects.
- Monitor crystal transparency with laser system.
- ATLAS: Local contribution b_L (within module) contribution to b < 0.5%.
- Calibrate long-range variations b_{LR} with $Z \rightarrow ee$.
- With $10^5 Z \rightarrow ee$ (few days), expect $b_{LR} < 0.4\%$ and b < 0.7%.

Soft Electrons (ATLAS)

Leptons and Photons at the (S)LHC - p.13/26

Pointing with Photons

- CMS relies on other charged tracks in event or converted photons.
- ATLAS can extrapolate using first $(\Delta \eta = 0.003)$ and second $(\Delta \eta = 0.025)$ samplings.

- $\Delta \theta(\gamma)$ from $\chi^0 \to \tilde{G}\gamma$ for $c\tau = 1.1$ km.
- In $10 \, \text{fb}^{-1}$, \sim 180 will decay in tracker volume.
- Demand $\Delta \theta > 5\sigma$; gives 82% efficiency.
- Set limit $c\tau > 100$ km with 30 fb^{-1} (if no candidates).

$H \rightarrow eeee$

- ATLAS:
- Resolution @ 10³³: 1.54 GeV
- Resolution @ 10³⁴: 1.87 GeV
- 4*e* ID eff: 69%

- 5σ discovery potential for $m_H = 200 \,\text{GeV}.$
- Requires good *E*, *p* measurements to limit tails to keep *H* width < 1%.

ATLAS Muon System

- Air-core superconducting solenoid. $\int B \cdot dl$: 2–6 Tm in barrel, 4–8 Tm in endcap.
- Precision measurement: Monitored drift tubes (MDT) ($|\eta| < 2$), cathode strip chambers (CSC) (2 < $|\eta| < 2.7$). Station resolution ~ 40 μ m.
- Trigger detectors: resistive plate chambers (RPC) (barrel), thin gap chambers (TGC) (endcap, $|\eta| < 2.4$).
- Design resolution (standalone): 10% at 1 TeV, < 3% for $10 \text{ GeV} < p_T < 250 \text{ GeV}$.
- Chamber positions and deformations continually monitored with optical alignment system.

CMS Muon System

- Chambers interspersed between iron plate flux return. $\int B \cdot dl$: 1–4 Tm.
- Precision measurement: Drift tubes (barrel), cathode strip chambers (endcap). Single station resolution $\sim 100 200 \,\mu$ m.
- Trigger detectors: resistive plate chambers.
- Design resolution, Standalone (with inner tracker): 8–15% (1–1.5%) at 10 GeV, 20–40% (6–17%) at 1 TeV.
- Optical alignment system.

Muon Performance

- Muon spectrometer resolution dominates for $p_T > 50 \,{\rm GeV}$
- Resolution fairly constant over η .
- Coverage $|\eta| < 2.7$.

- Silicon tracker resolution dominates for all p_T .
- Excellent p_T resolution in barrel; worse in endcap.
- Coverage $|\eta| < 2.4$.

Level-1 Muon trigger

- ATLAS: Based on coincidences between RPC/TGC hits.
- Low (>~ 6 GeV) and high (>~ 20 GeV) p_T trigger schemes.

- CMS: Find local track segments in DT and CSC.
- Combine segments and RPC hits.

Leptons and Photons at the (S)LHC - p.19/26

 $H \to ZZ^* \to 4\mu$

From "Physics at the LHC," Vienna, July 2004

τ leptons

- Reconstructing \(\tau\) decays is critical for numerous physics topics, including many Higgs channels.
- τ decays:
 - $\tau \rightarrow \nu + e, \mu$ - $\tau \rightarrow \nu + \pi^{\pm}/K^{\pm} + n\pi_0$ - $\tau \rightarrow \nu + 3\pi^{\pm} + \pi_0$
- Hadronic τ characteristics: narrow calorimeter cluster with 1/3 associated tracks. π0

- Useful variables (ATLAS):
 - $R_{\rm EM}$: Size of EM cluster.

 $- \Delta E_T^{12}: \text{ Fraction of cluster} \\ \text{ energy within } 0.1 < R < 0.2.$

N_{tracks}, charge, impact
 parameter.
 Leptons and Photons at the (S)LHC – p.21/26

τ ID (ATLAS)

• Form likelihood from variables $R_{\rm EM}$, ΔE_T^{12} , $N_{\rm track}$, strip width, $N_{\rm strip}$, charge, impact parameter, $E_T/p_T({\rm track1})$

τ trigger (CMS)

- Cuts on calorimeter, track isolation, and p_T of leading track.
- HLT results, with track p_T from 1–30 GeV.
- Get rejection of ~ 30 for efficiency of ~ 0.55 .

Super LHC (SLHC)

ref: Gianotti, et el., hep-ph/0204087

- Proposed luminosity and energy upgrades to the LHC.
- Luminosity might increase another order of magnitude, to 10^{35} cm⁻² s⁻¹. Energy might double to 28 TeV (more speculative, requires new magnets).
- Bunch spacing may go from 25 ns to 12.5 ns.
- Effect on detectors?
- Existing tracking detectors will not function at this luminosity. Complete replacement of inner tracking will be required.
 - Reduce cell size by $\sim 10\times$ to deal with increased occupancy.
 - Existing Si strip technology could work > 60 cm, and existing pixel technology > 20 cm.
 - New detector technologies are likely needed to survive in the region < 20 cm.
- Calorimeters.
 - Existing barrel calorimeters will likely still work.
 - Endcap calorimeters may need changes. ATLAS may need to use a different liquid, such as LKr. CMS endcap HCAL scintillator is a problem.
 - Pile-up noise in the calorimeter will increase by $\sim 3 \times$.
 - . For $E_T = 30 \text{ GeV}$, $\sigma E/E$ goes from $\sim 2.5\%$ to 3.6%.
 - . For $E_T = 40$ GeV and fixed electron efficiency, jet rejection decreases by about 50% (pile-up effects on isolation and shower shape requirements).
 - Trigger and readout systems may need only minor changes.

SLHC

- Muons.
 - Muon systems will probably continue to work without major changes in the detectors themselves.
 - But background rates are not currently well known. (Detectors were designed with a $3-5\times$ safety margin on background rates at 10^{34} .) Rates must be measured from actual running.
 - The forward regions $|\eta| > 2$ may need to be replaced with shielding, reducing the angular coverage.
 - Trigger and readout may need major changes to cope with the reduced bunch spacing.
- Trigger/DAQ upgrades will also be needed.
- Significant new R&D work will be required to design a detector that can run at 10^{35} cm⁻²s⁻¹ with the desired performance.
- Experience from running the present designs will be crucial.

Summary

- Installation is in progress for LHC and both detectors, for turn-on in 2007.
- The large luminosity of the LHC makes it a challenging environment.
- But the detector collaborations have converged on designs that should give excellent performance for detecting leptons and photons.
- Looking forward to the start of data-taking!