Two-loop QCD Corrections to the Heavy Quark Form Factors

Thomas Gehrmann

Universität Zürich

Snowmass Linear Collider Workshop 2005
Introduction

Top quark pair production at ILC
- Differential distributions in threshold region understood at NNLO
 → talks of A. Hoang, T. Teubner
- Continuum description only at NLO, insufficient for precision studies
- Observables: $d\sigma_{t\bar{t}}/dp_T$, A_{FB}^t, ...

Anomalous couplings of top quarks at ILC
- Observables: $g - 2$ from $e^+e^- \rightarrow t\bar{t}\gamma$, weak axial vector charges from angular distributions, ...
 → talk of U. Baur
- require precise understanding of higher order effects on Standard Model couplings
Heavy Quark Form Factors

Vector and axial vector form factors

\[\gamma^*, Z^0 \]

\[(-i) \left(v_Q F_1(s, m^2) \gamma^\mu + v_Q \frac{1}{2m} F_2(s, m^2) i \sigma^{\mu\nu} (p_1 + p_2)_\nu
ight) \]

\[+ a_Q G_1(s, m^2) \gamma^\mu \gamma_5 + a_Q \frac{1}{2m} G_2(s, m^2) \gamma_5 (p_1 + p_2)^\mu \]

Scalar and pseudoscalar form factors

\[H, A \]

\[-i \frac{m}{v} \left[S_Q F_S(s, m^2) + i P_Q F_P(s, m^2) \gamma_5 \right] \]
Two-loop QCD corrections
Two-loop QCD Form Factors

Method of calculation
W. Bernreuther, R. Bonciani, R. Heinesch, T. Leineweber, P. Mastrolia, E. Remiddi, TG

- project form factors from Feynman diagrams
- reduce loop integrals to master integrals
 - integration-by-parts equations (K. Chetyrkin, F. Tkachov)
 - Lorentz invariance equations (E. Remiddi, TG)
 - Laporta algorithm (S. Laporta)
- evaluate master integrals using differential equations
 R. Bonciani, P. Mastrolia, E. Remiddi

Renormalisation: hybrid scheme
- heavy quark mass and wave function: on-shell \(Z_{m}^{OS}, Z_{2}^{OS} \)
- QCD coupling constant: \(\overline{MS} Z_{g}^{MS}, Z_{3}^{MS} \)
- Slavnov-Taylor identity: \(Z_{1F} = Z_{g}^{MS} Z_{2}^{OS} \sqrt{Z_{3}^{MS}} \)
Anomaly contributions

Consider four mass combinations: massive/massless for inside/outside quark.

Use d-dimensional γ_5 (S. Larin).

All mass combinations finite after renormalisation.

All mass combinations fulfil anomalous ward identities:

$$p^\mu \Lambda^R_{Q,\mu} = 2m\Lambda^R_Q - i\frac{\alpha_s}{4\pi} T_R F^R_Q$$

Recover axial contribution to $Z^0 \to \text{hadrons}$: $G_1(s, m, 0) - G_1(s, 0, 0)$

B. Kniehl, J. Kühn
Two-loop QCD Form Factors

Results

- Form factors expressed as function of
 \[y = \frac{\sqrt{s} - \sqrt{s - 4m^2}}{\sqrt{s} + \sqrt{s - 4m^2}} \]

 in terms of rational factors and harmonic polylogarithms up to weight 4

 E. Remiddi, J. Vermaseren

- Form factors expanded at threshold in \(\beta = \sqrt{1 - 4m^2/s} \) and for asymptotic energy
 in \(r = s/m^2 \)

- Results checked using
 - Ward identities
 - Partial results in literature
 - A. Hoang, J. Kühn, T. Teubner;
 - A. Czarnecki, K. Melnikov; M. Beneke, A. Signer, V.A. Smirnov
Two-loop QCD Form Factors

Threshold and high energy expansion

- consider finite anomalous form factors

- threshold expansion requires at least β^2-terms; limited range of applicability
- asymptotic energy expansion converges better; larger range of applicability
Form factors at zero momentum transfer
(→ talk of U. Baur)

\[F_1(s = 0) = 1 \quad \text{(current conservation)} \]
\[v_{Q}^{\gamma,Z} F_2(s = 0) = (g - 2)^{\gamma,Z} \quad \text{(anomalous magnetic moment)} \]
\[a_{Q}^{Z} G_1(s = 0) = a_{Q}^{Z,\text{eff.}} \quad \text{(effective axial vector charge)} \]

Affect search for anomalous couplings

<table>
<thead>
<tr>
<th>((g - 2)_Q^{(1f)})</th>
<th>((g - 2)_Q^{(2f)})</th>
<th>((g - 2)_Q^{(1f)})</th>
<th>((g - 2)_Q^{(2f)})</th>
</tr>
</thead>
<tbody>
<tr>
<td>((g - 2)_Q^{(1f)})</td>
<td>(1.53 \cdot 10^{-2})</td>
<td>(-1.52 \cdot 10^{-2})</td>
<td>(-8.4 \cdot 10^{-3})</td>
</tr>
<tr>
<td>((g - 2)_Q^{(2f)})</td>
<td>(4.7 \cdot 10^{-3})</td>
<td>(-1.00 \cdot 10^{-2})</td>
<td>(-6.6 \cdot 10^{-3})</td>
</tr>
<tr>
<td>((g - 2)_Q^{(1f)})</td>
<td>(5.2 \cdot 10^{-3})</td>
<td>(-1.87 \cdot 10^{-2})</td>
<td>(-1.03 \cdot 10^{-2})</td>
</tr>
<tr>
<td>((g - 2)_Q^{(2f)})</td>
<td>(1.6 \cdot 10^{-3})</td>
<td>(-1.24 \cdot 10^{-2})</td>
<td>(-8.1 \cdot 10^{-3})</td>
</tr>
</tbody>
</table>

Experimental sensitivity

\[\sqrt{s} = 500 \text{ GeV}: \]
\[(g - 2)_t^{\gamma,Z} : \pm 1.1 \cdot 10^{-2} \]
\[(G_{1,t} - 1) : \pm 1.6 \cdot 10^{-2} \]

\[\sqrt{s} = 800 \text{ GeV}: \]
\[(g - 2)_t^{\gamma,Z} : \pm 0.8 \cdot 10^{-2} \]
\[(G_{1,t} - 1) : \pm 1.6 \cdot 10^{-2} \]
Forward-backward Asymmetry

Forward-backward asymmetry of heavy quarks

- is very sensitive on the Higgs mass
- displays 2.3σ deviation for b-quarks at LEP1
- at NNLO, receives contributions from 2, 3 and 4 parton final states
- two-parton final state infrared finite on its own

Two-parton contribution to

$$A_{FB}^{t\bar{t}} = \frac{\sigma_A}{\sigma_S}$$
computed two-loop QCD corrections to heavy quark form factors $\gamma^*, Z^0, H, A \rightarrow Q\bar{Q}$

crucial ingredient to $d\sigma^{tt}$ and A^{tt}_{FB} in the continuum

tested convergence of threshold and large energy expansion

sizable two-loop effects on determination of anomalous couplings