Electroweak baryogenesis in the MSSM

Electroweak baryogenesis in the MSSM

- The basics of EWBG in the MSSM
- Where do light stops (charginos) come from?
- Constraints from d_e-, $\Omega_{\rm CDM}$, colliders ...

C.Balázs, M.Carena, A. Menon, D.E.Morríssey, C.E.M.Wagner PRD71 075002 (`05)

C.Balázs, M.Carena, C.E.M.Wagner PRD70 015007 (`04)

http://www.hep.anl.gov/balazs/Physics/Talks/2005/08-Snowmass

Baryon content of the Universe

Genesis

- Baryo- or leptogenesís
 - preexisting asymmetry $\rightarrow \leftarrow$ inflation \rightarrow dynamic mechanism
 - genesís: dynamical generation of asymmetry from symm. initial cond.s
 - relies on thermodyn. phase transition (symmetric \rightarrow asymmetric phase)
 - has to satisfy the Sakharov conditions
 - 0. initially: matter-antimatter symmetric phase
 - 1. B is efficient before a thermodynamic phase transition
 - 2. C & CP interactions allow to generate asymmetry
 - 3. \mp preserves asym.: at phase transition universe falls out equilibrium, and new vacuum B conserving
- Baryo- or leptogenesis in the SM
 - only -CP distinguishes matter and anti-matter in the SM
 - not enough CP in the SM to account for baryon asymmetry

Gavela et al '94; Huet, Sather '94

Baryogenesís

- Sakharov conditions for the MSSM in the early Universe
 - 1. B: (classical) B+L breaks anomalously

transitions between inequivalent $SU(2)_L$ gauge vacua lead to B

- 2. C \mathcal{E} : new complex phases can arise when SUSY is softly broken
- 3. \mp : expansion of Universe \rightarrow departure from equilibrium

 1^{st} order phase transition \rightarrow even larger departure

- Electroweak baryogenesis
 - concrete mechanism to generate baryon asymmetry
 - consistent with particle physics and cosmology (inflation)
 - utilizes existing phase transition: EWSB
 - connected to weak scale \rightarrow testable at Tevatron, LHC and ILC
 - alternatives: GUT scale baryogenesis, leptogenesis, etc.
- Off the wall

• 1st order EW phase transition proceeds by nucleating bubbles

The Electroweak Phase Transition

• The order parameter for the transition is the local expectation value of the Higgs boson field, $\langle \phi \rangle$.

 $\langle \phi \rangle = 0 \Rightarrow SU(2)_L \times U(1)_Y$ is unbroken. $\langle \phi \rangle \neq 0 \Rightarrow SU(2)_L \times U(1)_Y \rightarrow U(1)_{em}.$

• $\langle \phi \rangle$ is the minimum of the effective potential at temperature T:

$$V_{eff} = (-\mu^2 + \alpha T^2)\phi^2 - \gamma T\phi^3 + \frac{\lambda}{4}\phi^4 + \dots$$

Bubble Nucleation

• First order phase transition:

 \Rightarrow degenerate minima at temperature T_c .

- The Universe starts in the $\langle \phi \rangle = 0$ phase.
- For $T < T_c$, the $\langle \phi \rangle \neq 0$ phase is favoured, but is blocked the potential.
- By tunnelling, small regions pass to the $\langle \phi \rangle \neq 0$ phase.
- This nucleates bubbles of $\langle \phi \rangle \neq 0$ phase.
- Bubbles expand until they fill all of space.

Off the wall mechanism (simplified)

Strongly 1st order
$$PT \rightarrow light stop (\xi higgs)$$

- Generation of $\eta = \frac{n_B}{n_V}$ requires a strongly 1st order EW phase transition
 - strongly 1st order EWPT \leftrightarrow large order parameter: $\phi_c/T_c \gtrsim 1$
 - type § strength of EWPT \Leftarrow minimum of finite \top effective potential $\bigvee_{\text{eff}} (\phi, \top) = (-\mu^2 + \alpha \tau^2) \phi^2 \gamma \tau \phi^3 + \frac{\lambda}{4} \phi^4 + \dots$
 - $\vee_{\rm eff}$ is minimal (for $\alpha, \mu \rightarrow 0$) if

$$\phi_c/T_c \sim \gamma/\lambda$$

- \rightarrow coefficient of cubic term (γ) determines order of phase transition
- γ generated by loops in (MS)SM bosonic loops $\rightarrow \gamma \sim g^3$ (SM) scalar loops $\rightarrow \gamma \sim y^3$ (MSSM) tree level cubic $\rightarrow \gamma \sim A_{\lambda}$ (nMSSM)
- in MSSM light scalars induce strongly 1st order EW phase transition
- light, 3^{rd} generation, right handed scalar invoked \rightarrow light $t_1 \sim t_R$
- $t_2 \sim t_L > 1$ TeV needed to evade EW precision

Enough $-CP \rightarrow light W_1$, small μ

- CP in the chargino sector
 - SM: CKM phase is not enough for EWBG Gavela et al '94; Huet, Sather '94
 - MSSM: additional sources of -CP from μ term ξ soft SSB parameters
 - charginos generate the largest -CP contribution
- Enough CP if

 $M_2, \mu \leq 500 \text{ GeV } \mathfrak{S} \text{ Arg}(M_2 \mu) \gtrsim 0.1$

Carena, Seco, Quíros, Wagner 2002

- \rightarrow light \tilde{W}_1
- Mínímal setup: $Arg(\mu) \gtrsim 0.1 \text{ § } Arg(M_2) = 0$
 - ↔ CP only in gaugino sector
 - baryon asymmetry $\eta = \frac{n_B}{n_{\gamma}} \sim Sin(Arg(\mu))$
- Experimental constraints
 - strongest límíts from $e^- EDM$: $d_{e^-} \sim Sin(Arg(\mu))$
 - less severe límíts from b \rightarrow s γ

Electron electric dipole moment constraint

 $-e^-$ EDM is one of the most sensitive probes of EWBG

- EWBG requires complex phases $\rightarrow \leftarrow$ complex phases generate EDM
- EWBG requíres $\operatorname{Arg}(\mu) \gtrsim 0.1 \rightarrow 2 \times 10^{-28} \text{e cm} \lesssim |d_e|$
- experimental limit: $|d_e| < 1.6 \times 10^{-27} e \text{ cm}$

Balázs, Carena, Menon, Morríssey, Wagner 2004

- Minimal model probed if de-limits improve by 10-100 (next few years)
- Escape e^- EDM: specific phase arrangements, $m_A > 1$ TeV, non-min. models

EWBGMSSM: MSSM constrained by EWBG

- EDM límíts \rightarrow heavy 1 st $g 2^{nd}$ generation scalars

- Scenario is strongly constrained by LEP2: 114 GeV < m_{h^0}

• Does EWBG survive the stringent astro (collider & lowE) constraints?

The supersymmetric origin of matter

 $-\tilde{t}_1-\tilde{Z}_1$ coannihilation lowers the neutralino relic density

to agree with WMAP where $m_{\tilde{t}_1} \sim m_{\tilde{Z}_1}$

Input parameters:

$$\begin{split} &tan\beta=7,\,m_{A}=1000\;GeV,\,Arg(\mu)=1.571\\ &M_{2}=M_{1}g_{2}^{2}/g_{1}^{2},\,Arg(M_{1})=Arg(M_{2})=0,\,M_{3}=1\;TeV\\ &m_{U3}=0\;GeV,\,m_{Q3}=1.5\;TeV,\,X_{t}=0.7\;TeV\\ &m_{L3},\,m_{E3},\,m_{D3}=1\;TeV\\ &m_{L1,2},\,m_{E1,2}=10\;TeV\\ &m_{Q1,2},\,m_{U1,2},\,m_{D1,2}=10\;TeV \end{split}$$

Legend:

Balázs, Carena, Menon, Morríssey, Wagner 2004

Collider implications \rightarrow Caroline's \mathcal{F} Ayres' talk

- If $\tilde{t}_1 \rightarrow c \tilde{Z}_1$ dominant considerable part of para. space observable at Tevatron depending on L - If $\tilde{t}_1 \rightarrow b \tilde{Z}_1$ W or $m_{\tilde{t}_1} \leq 1.25 m_{\tilde{Z}_1}$ (Higgs resonance or $\tilde{t}_1 - \tilde{Z}_1$ coannihilation) difficult at Tevatron

- LHC: símilar sítuation

 ILC expected to cover essentially all regions

Balázs 2005

- Universe carries baryon-asymmetry
- Baryogenesis: dynamic mechanism to explain the baryon-asymmetry
 1 SM anomalies lead to -B
 - 2 MSSM contains enough CP
 - 3 EW phase transition enhances departure from equilibrium
- Electroweak baryogenesis
- "off the wall" mechanism satisfies Sakharov conditions
- enough $\xrightarrow{CP} \leftrightarrow$ light charginos, small μ
- strongly 1^{st} order phase transition \leftrightarrow light stop, (lightest) Higgs
- Experimental constraints
- LEP2 Higgs constraint leaves only a small window in the MSSM
- $e^- EDM$ is one of the strongest constraint on $Arg(\mu) \leftrightarrow "stop split SUSY"$
- neutralino relic abundance narrows the parameter space to 'strips'
- EWBG in the MSSM will be discovered/excluded by the ILC