International Linear Collider Workshop, Snowmass 2005

SUPERSYMMETRY PARAMETER ANALYSIS

Convention and Project

Jan Kalinowski (Warsaw University) for the SPA Collaboration [authors from America, Asia and Europe]

Motivation

- LHC will see SUSY if realised at LE scale
 Many channels from squark and gluino decays
- ILC needed for precision and model-independent studies
- SUSY a bridge between EW and GUT/PI scales

From theory: important to achieve

- accurate theoretical calculations to match the experimental data
- model-independent reconstruction of Lagrange parameters
- extrapolate to high scale => SUSY breaking mechanism

to achieve these goals we propose

the SPA Project

The SPA Conventon and Project

SPA Convention

renorm. schemes / LE parameters / observables

Program repository

 th. & exp. analyses / LHC+ILC tools / Susy Les Houches Accord
 Theoretical and experimental tasks short- and long-term sub-projects
 Reference point SPS1a' derivative of SPS1a, consistent with all data

Future developments

CP-MSSM, NMSSM, R_pV , effective string th., etc.

1. SPA Convention

- The masses of the SUSY and Higgs: pole masses
- The SUSY Lagrangian parameters: mass parameters and couplings, including tanβ, defined in the DRbar scheme at the scale M= 1 TeV
- Gaugino/higgsino and scalar mass matrices, rotation matrices and the corresponding mixing angles defined in the DRbar, except for the Higgs, in which mixing is defined in the on-shell scheme at m_h
- The SM input parameters: G_F, α, M_Z, α_s^{MSbar}(M_Z) lepton masses on-shell
 - t quark mass on-shell
 - b, c quark masses in MSbar taken at masses themselves light quarks in MSbar at a scale of 2 GeV
- σ , Γ, BR, ..., calculated for parameters as above

DRbar scheme

- DRbar = DRED + modified min. subtraction
- most convenient, natural for GUT-inspired parameter sets
- but problems with DRED?

SUSY, Consistency

- Does DRED preserve SUSY?
- Mathematical inconsistency [Siegel'80]
- Symmetry-restoring counterterms necessary in calculations?

QCD-Factorization

Hadron processes in DRED:

 $\sigma_{had} = f_{parton} \otimes \sigma_{parton}$ +non-factorizing terms?

[Beenakker, Kuijf, Neerven, Smith'88] [Beenakker, Höpker, Spira, Zerwas'96]

D. Stockinger
A. Signer
$$\sigma(G, \ldots) = \sigma(g, \ldots) + \sigma(\phi, \ldots)$$
$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$
$$4-\dim gluon \qquad D-\dim gluon \qquad 4-D \text{ scalars}$$

2. Program Repository

Scheme translation tools Spectrum calculators: Lagrangian \iff masses ex: FeynHiggs, SPheno, SuSpect, SoftSusy, IsaJet, ... Other observables: cross sections, decay rates, LE param., astrophysics, cosmology ex: HDecay, NMHDecay, SDecay, Prospino, micrOMEGAs, ... Event generators: IsaJet, Phytia, Whizard, ... Analysis programs: SFitter, Fittino RGE: M (SPheno, SoftSusy, IsaJet/IsaSusy, ...

http://spa.desy.de/spa

http://spa.desy.de/spa

The SPA project is a joint study of theorists and experimentalists working on LHC and Linear Collider phenomenology. The study focuses on the supersymmetric extension of the Standard Model. The main targets are

- High-precision determination of the supersymmetry Lagrange parameters at the electroweak scale
- Extrapolation to a high scale to reconstruct the fundamental parameters and the mechanism for supersymmetry breaking

The SPA convention and the SPA Project are described in the report SPA.draft.ps.

Coordinators

3. Project tasks

Higher order calculations mandatory

shift M = 1 TeV to 100 GeV \Rightarrow next loop!

3. Project tasks

- better understanding DRbar scheme
- include new channels, observables, ...
- improve bkgd & signal simulation with realistic estimates
 of theoretical errors
- cover new theoretical scenarios
- coherent LHC/ILC analyses (-> G. Weiglein)

4. Reference point SPS1a'

SPS1a'- derivative of the SPS1a point

SPS1a': Measurements

edges at LHC		Mass	"LHC"	"LC"	"LHC+LC"	
	h^0	115.4	0.25	0.05	0.05	
decavispectra at 11 C	H^0	431.1		1.5	1.5	
	$\tilde{\chi}_1^0$	97.75	4.8	0.05	0.05	
threshold scans at II C	$\tilde{\chi}_2^0$	184.4	4.7	1.2	0.08	
the shore seems at the	$\tilde{\chi}_4^0$	419.6	5.1	3 - 5	2.5	
$e^+e^- \rightarrow \chi_1^+\chi_1^-$	$\tilde{\chi}_1^{\pm}$	184.2		0.55	0.55	
	\tilde{e}_R	125.2	4.8	0.05	0.05	
results:	\tilde{e}_L	190.1	5.0	0.18	0.18	
	$\tilde{\tau}_1$	107.4	5 - 8	0.24	0.24	
	\tilde{q}_R	547.7	7 - 12	—	5 - 11	
	\tilde{q}_L	565.7	8.7	—	4.9	$ \overline{\chi} $
	\tilde{t}_1	368.9		1.9	1.9) V]
	\tilde{b}_1	506.3	7.5	—	5.7	
	\tilde{g}	607.6	8.0	_	6.5	

Convention and Project -- Jan Kalinowski

11

Reconstructing Lagrange param.

global analysis code	· · ·	Parameter	SPS1a'value	Fit error [exp]
SFitter and Fittino	Expe	M_1	103.3	0.1
fit masses + xsectic	.∎ M€	M_2	193.4	0.1
radiative correction:	• Eri	M_3	568.9	7.8
included		μ	400.4	1.1
		$M_{\tilde{e}_L}$	181.3	0.2
ex. Fittino		$M_{\tilde{e}_R}$	115.6	0.4
	Tree	$M_{\tilde{\tau}_L}$	179.5	1.2
	coars	$M_{\tilde{u}_L}$	523.2	5.2
results (based on 82)	Rou	$M_{\tilde{u}_R}$	503.9	17.3
simulated measurements	• Pa	$M_{\tilde{t}_L}$	467.7	4.9
at the LHC and ILC)	• Err	$m_{ m A}$	374.9	0.8
		A_{t}	-525.6	24.6
		aneta	10.0	0.3

High-scale extrapolation

\checkmark gauge couplings α	mSUGRA	Parameter, ideal	"LHC+LC" errors
a 60 [M_1	$250.~{\rm GeV}$	$0.18~{\rm GeV}$
	M_2	ditto	$0.26 {\rm GeV}$
50	M_3		$2.8 \ \mathrm{GeV}$
S140	M_{L_1}	70. GeV	$4.1 \mathrm{GeV}$
30	M_{E_1}	ditto	$7.9~{ m GeV}$
20 -	M_{Q_1}		$11. \mathrm{GeV}$
$10 - \alpha_3^{-1}$	M_{U_1}		31. GeV
e e	M_{H_1}	ditto	$7.5 {\rm GeV}$
10 ² 10 ⁶ 10 ¹⁰ O IGeVI	M_{H_2}		$72. \mathrm{GeV}$
G[GOV]	A_t	$-300. {\rm GeV}$	44. GeV

universality can be tested in bottom property of the set of the set

If high-scale theory known

top-down approach: high quality mSUGRA fit

	Parameter, ideal	Experimental error
M_U	$2.47 \cdot 10^{16} \text{ GeV}$	$0.02 \cdot 10^{16} { m GeV}$
α_U^{-1}	24.17	0.06
$M_{\frac{1}{2}}$	$250 {\rm GeV}$	$0.2 {\rm GeV}$
$\tilde{M_0}$	$70 {\rm GeV}$	$0.2 {\rm GeV}$
A_0	$-300 \mathrm{GeV}$	$13.0 { m GeV}$
μ	$402.9 \mathrm{GeV}$	$0.3 {\rm GeV}$
aneta	10	0.3

caveat: deviations may hide in badly measured obs. which do not spoil top-down fit

but which can become manifest in bottom-up approach

Summary and outlook

- SPA: a joint interregional theoretical and experimental effort
 It provides:
 - a well defined framework for SUSY analyses
 - all necessary theoretical and computational tools
 - a well defined testground SPS1a'
 - a platform for future extensions/developments

IHC+ILC – telescope to GUT/PI physics

Report: Supersymmetry Parameter Analysis: SPA Convention and Project

Summary and outlook

many things to work on both: experimental and theoretical side

> You are invited to join as a co-author of the report visit http://spa.desy.de/spa

send comments: zerwas@desy.de martyn@desy.de kalino@fuw.edu.pl

END

