Analysis of Two Challenging SUSY Dark Matter Scenarios at ILC

Z. Zhang LAL, Orsay

1

Motivations

- Current precision on Dark Matter(DM) from WMAP: 10% or in 2σ range: 0.094<Ω_{DM}h²<0.129 (Future precision expected from PLANCK: 2%)
- What are these non-baryonic DM?
- Can ILC reveal the nature of DM?
 - If yes,
 - → What are requirements on the machine and detectors?
 - → How precise can one measure the DM relic density?

Two Challenging SUSY DM Scenarios at ILC

Scenario one:

Mass degeneracy between stau and LSP $\chi^{\rm 0}$

➔ Details on Next slides

Already studied earlier:

"Experimental Implications for a Linear Collider of the SUSY Dark Matter Scenario"

by

P. Bambade, M. Berggren, F. Richard, Z. Zhang [hep-ph/0406010] & contribution to LCWS'04

I mpact of larger uninstrumented region in BeamCal with 20mrad x-angle

Scenario two:

Mass degeneracy between χ_{1}^{+} and LSP χ^{0}

New

Scenario One

Benchmark point D from Battaglia et al, hep-ph/0306219: [M_{1/2}=525GeV, m₀=101GeV, tanβ=10, μ <0, m_χ=212GeV, m_{sτ}=217GeV, Ω_{DM}h²=0.09]

Main Challenges for the Stau Analyses

$$e^+e^- \rightarrow stau^+ stau^- \rightarrow \chi^0 \tau^+ \chi^0 \tau^-$$

Cross sections: 10fb @ 500GeV, 4.6fb @ 442GeV

- SM backgrounds are many orders of magnitude larger
 Need very efficient veto at low angles
- Additional complication if crossing-angle collisions

Vetoing Against Energetic e⁺/e⁻ from γγ out of Huge Number Soft Beamstrahlung Background

- e⁺/e⁻ from ee→eeff: Few e's per event but energetic
- Beamstrahlung background: Huge number $e_{,\gamma}/event$ but soft e.g. the energy density/event in LCAL @ z=3.7m simulated by K. Buesser

Low Angle Veto in Head-on Collisions

Angular distribution of the spectator e from $ee \rightarrow ee\tau\tau$

Total $\sigma \sim 0.43 \times 10^6$ fb of which 3/4 with both e's staying in the beampipe corresponding to the peak at zero in the inset

Analysis cuts reject most of the background

An ideal veto with $P_{T,min}$ >0.8GeV is sufficient to suppress all remaining $\gamma\gamma \rightarrow \tau\tau$ background events except those with energetic μ/π at low angles

Zhiqing Zhang (LAL, Orsay)

Snowmass, Aug.14-27, 2005

Remaining Background in Cross-Angle Mode

10mrad half crossing angle

For an incoming beam hole of r=1.2cm the probability for a spectator e+/e- to enter the hole is 10^{-3} .

Remaining background events correspond (mainly) to those with e+/e- goes into the incoming beam hole.

Additional cuts remove essentially all these events.

A price to pay however: 25% efficiency reduction e.g. for benchmark point D @ Ecm=442GeV from ~5.7% to ~4.3%

New Analysis with Larger Inefficient Region

- 1) If beam hole radius increases from 1.2cm to 1.5cm
- 2) If additional blind region

Question:

What's the consequence for the stau analysis?

Answer:

The additional cuts need to be modified introducing larger inefficiency from 25% to 30% w.r.t. the head-on analysis

Zhiqing Zhang (LAL, Orsay)

Scenario Two

Common feature: (very) heavy sfermions even beyond the reach of LHC → (cf talk of F. Richard in "cosmological connections" session on 23.8.2005)

	Scenario	M ₁ , M ₂ , m _{1/2} (GeV)	μ(GeV), m ₀ (TeV)	tanβ
ſ	Focus	407, 724, 900	427, 12.5	10
	Split SUSY	281, 560, 700	340, 106	5
	h-annihilation	78, 156, 201	-400, 106	5
	EGRET	68, 128, 165	212, 1.4	51
	LEP	60, 117, 151	900, 2.0	20
	Degenerate	5000, 5000 (AMSB)	300, 5.0	20
5.	This talk conce	ntrates on small ma	ss difference χ⁺₁-χ	

Snowmass, Aug.14-27, 2005

More on the Degenerate Scenario

Some freedom on $\boldsymbol{\mu}$ parameter is possible:

μ (GeV)	Mass χ , χ_2 (GeV)	Mass χ^+_1 (GeV)	$\Omega_{ m DM}{ m h}^2$
300	298.8, 300.9	299.8	0.0094
200	198.8, 200.9	199.8	0.0043

- Interesting scenario not saturating DM density allowing other (non-)SUSY DM contribution (gravitino,axion,...)
- Mass difference between χ_{1}^{+} and χ only 1 GeV

 \rightarrow very soft decay final state X (= π^+ , $\pi^+\pi^0$, ...) of $\chi^+_1 \rightarrow \chi$ X

- Choose μ=200GeV with ECM=500GeV
 - → fairly large cross section (e+e-→ $\chi_1^+ \chi_1^-(\gamma)$) : 352 fb
 - → energetic I SR photons up to ~90GeV
 - \rightarrow share the same bkg files produced for scenario 1

Selection Strategy (for Head-on)

- 1γ + 2 charged particles allowing 1 additional neutral one
- $2.5^{\circ} < \theta_{\gamma} < 175.5^{\circ}$
- $E_{\gamma} > 35 \text{ GeV}, E_{\text{total neutral}} < 100 \text{ GeV}, E_{\text{total charged}} < 3 \text{ GeV}$
- Veto condition P_T>0.8GeV
- Bkg processes considered and checked to be negligible

$$\begin{array}{lll} \gamma*\gamma* \rightarrow \tau^{+}\tau^{-}(E_{t}>4.5 \text{GeV}): & \sigma\sim4.3 \times 10^{5} \text{ fb} \\ \rightarrow \mu^{+}\mu^{-}(E_{t}>2 \text{GeV}): & \sigma\sim5.2 \times 10^{6} \text{ fb} \\ \rightarrow \text{hadrons (direct*direct dominant)} \\ & \text{ccbar} & \sigma\sim8.2 \times 10^{5} \text{ fb} \\ \rightarrow WW \\ e^{+}e^{-} \rightarrow \mu^{+}\mu^{-}, \ \tau^{+}\tau^{-}: & \sigma\sim1.0 \times 10^{3} \text{ fb} \\ \rightarrow W/W \end{array}$$

 $\Delta m_{\widetilde{\chi}_1}$ (GeV)

→ Overall signal efficiency: 1.7% but ...

Summary

- Two challenging SUSY DM scenarios studied
- Scenario one (LSP stau annihilation) shows
 20mrad x-angle collision is possible provided
 the realistic veto efficiency is comparable with P_T>0.8GeV
- Scenario two (LSP chargino mass degenerate) shows the ISR method is feasible (so far only head-on collision studied)