Tools for constraining heavy particles (work in progress)

Gudrid Moortgat-Pick (CERN Theory)

in collaboration with: K. Desch, J. Kalinowski, G. Polesello, K. Rolbiecki, J. Stirling

SUSY WG

Snowmass, 22/08/2005

- 1. Introduction
 - \rightarrow general remarks about spin correlations, angular and energy distributions
- 2. Chosen scenario focuspoint/split-Susy inspired \rightarrow masses, cross sections
- 3. Energy and invariant mass distributions
- 4. Forward-backward asymmetries \rightarrow determination of $m_{\tilde{\nu}}$, $m_{\tilde{a}}$ far beyond the kinematical limit
- 5. First results for parameter determination
- 6. Conclusions

Motivation

Processes: fermion production with subsequent decay(s)

- Problem for today: determination of heavy virtual particles
- 105 new parameters in the general MSSM \rightarrow constraints on parameters from e, n, Hg dipole moments, LEP, Tevatron, $b \rightarrow s\gamma$, $g_{\mu} - 2$, dark matter searches, etc.

Ibrahim ea '99, Barger ea. '01, Abel ea.'01, Belanger'04, Olive ea. '05,...

- Suitable observables: cross sections, masses, BR's, ...
 - \rightarrow what else could one use?
- Energy and angular distributions, different kinds of asymmetries \rightarrow some observables depend strongly on spin correlations

1. Introduction: spin correlations

Processes: $a + b \longrightarrow f_1 + f_2$, $f_1 \rightarrow 123$ and $f_2 \rightarrow 456$

- study of properties of f_1 , f_2
- \rightarrow 'split' process in production×decay in narrow width approximation ok., since here $m_{\tilde{\chi}} \gg \Gamma_{\tilde{\chi}}$
- \rightarrow however take into account full spin correlations of f_1 , f_2

•
$$|T|^2 = |\Delta_{f_1}|^2 |\Delta_{f_2}|^2 \sum_{fin.sp.} (P^{\lambda_{f_1}\lambda_{f_2}} P^{*\lambda'_{f_1}\lambda'_{f_2}}) \times (Z_{\lambda_{f_1}}Z_{\lambda'_{f_1}}^*) \times (Z_{\lambda_{f_2}}Z_{\lambda'_{f_2}}^*)$$

⇒ production and decay process are coupled by interference terms between various polarization states of the fermions!

Amplitude squared of production \times decay:

$$|T|^2 \sim \mathcal{P}(p_{f_1}, \overline{s_{f_1}, p_{f_2}}, \underbrace{s_{f_2})\mathcal{D}(p_{f_2}, s_{f_2}}_{\text{spin correlations}}) \otimes \mathcal{D}(p_{f_1}, s_{f_1})$$

spin vectors $s_f \Rightarrow S^L(f_i)$ longitudinal and $S^{T_x}(f_i)$, $S^{T_y}(f_i)$: transverse polarizations of f_i

Introduction: spin correlations, cont.

Processes: $a + b \longrightarrow f_1 + f_2$, $f_1 \rightarrow 123$ and $f_2 \rightarrow 456$

 \Rightarrow Decay particles '1,2,3' and '4,5,6' depend on polarization of f_1 , f_2 .

• Which observables depend on spin correlations?

 \Rightarrow depends on Majorana \leftrightarrow Dirac character of fermions f_1 , f_2

Petkov'84, Bilenky et al. '85,'86, GMP et al., '97, '98, '99, '00, '02

	Dirac		Majorana		
Decay	СР	ÇÞ	СР	Ç⁄Þ	GMP, Fraas '00
energy distrib. of particle '1'	$S^L(f_i)$	$S^L(f_i)$	—	$S^L(f_i)$	In Dirac case:
opening angle of particles '1' and '2'	$S^L(f_i)$	$S^L(f_i)$	—	$S^L(f_i)$	\rightarrow effects in shape
angular distrib. of particle '1'	all	all	all	all	
opening angle of particles '1' and '4'	all	all	all	all	of $d\sigma/dE_f!$

Remark: invariant mass distrib. ('12') are independent of spin correlations! Dicus, Sudarshan, Tata '85

- What are we doing today? some applications; pure analytical approach for phase space and spin-density matrix
- Which generators could also simulate these effects?
 - → SUSYGEN (Ghodbane '99), HERWIG (Richardson '01)

2. Forward-backward asymmetries: access to heavy $m_{\tilde{a},\tilde{\ell}}$?

• Motivation: what to do if only very few particles accessible at LHC/ILC?

Case study - focuspoint inspired scenario (Desch, Kalinowski, GMP, Rolbiecki, Stirling):
 → challenging in general at LHC as well as at ILC!

- \rightarrow assume: LHC + first stage of ILC_{500GeV}, later ILC_{1TeV}(but not today!)
- chosen scenario: $M_1 = 60 \text{GeV}$, $M_2 = 121 \text{GeV}$, $\mu = 540 \text{GeV}$, $\tan \beta = 20$
 - $ightarrow m_h =$ 120GeV, $m_{A,H,H^\pm} \sim$ 2TeV
 - $m_{ ilde{g}}=$ 416GeV, $m_{ ilde{q}}\sim$ 2TeV, $m_{ ilde{t}_{1,2}}\sim$ (1100, 1600)GeV
 - $m_{ ilde{\chi}_i^0} = (59, 117, 546, 550) ext{GeV}, \ m_{ ilde{\chi}_i^+} = (117, 553) ext{GeV}, \ m_{ ilde{e}_{L,R}, ilde{
 u}} \sim 2 ext{TeV}$
- at LHC: \tilde{g} and its chains accessible, mainly $\tilde{g} \to \tilde{\chi}_2^0 b \overline{b}$

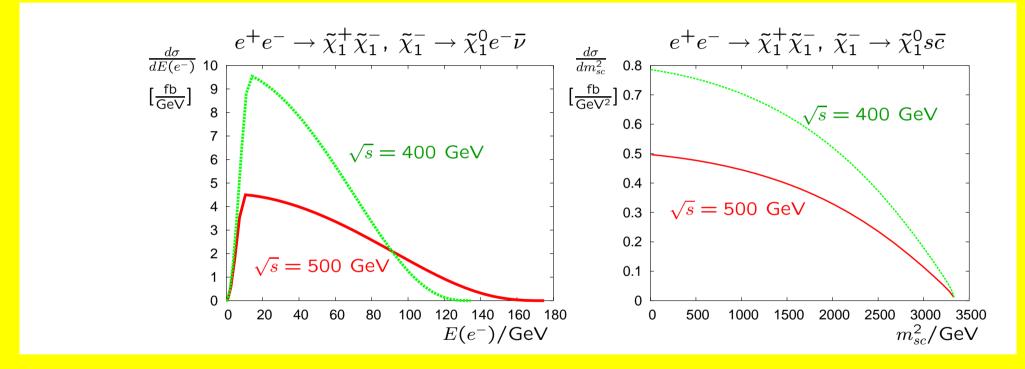
• at ILC: $m_{\tilde{\chi}_{1,2}^0}$, $m_{\tilde{\chi}_1^\pm}$ kinematically acessible $\sigma(e^+e^- \rightarrow \tilde{\chi}_1^+ \tilde{\chi}_1^-) \sim 2$ pb, but $\sigma(e^+e^- \rightarrow \tilde{\chi}_1^0 \tilde{\chi}_2^0) < 1$ fb!

 \Rightarrow Life may be tough: what could one do with LHC+ILC₅₀₀? Could one get any constraints on heavy scalar particles?

How to get the masses?

• here other method needed: use A_{FB} of final decay $\ell!$ Processes: $e^+e^- \rightarrow \tilde{\chi}_1^+ \tilde{\chi}_1^-$, $\tilde{\chi}_1^+ \rightarrow \tilde{\chi}_1^0 e^+ \nu_e$ or $\rightarrow \tilde{\chi}_1^0 \bar{s}c$

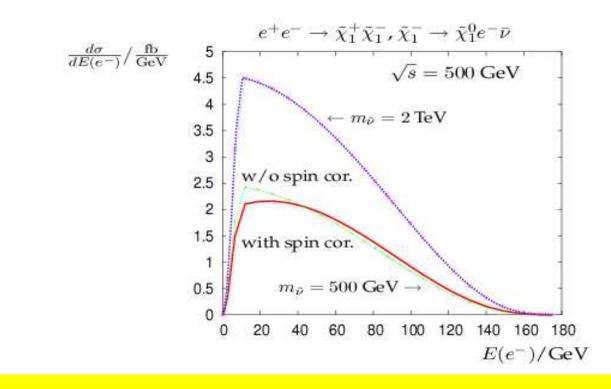
Cross sections of $\tilde{\chi}_1^{\pm}$, $\tilde{\chi}_1^0$, $\tilde{\chi}_2^0$ at $\sqrt{s} = 400$, 500 GeV:


 $BR(\tilde{\chi}_1^+ \to \tilde{\chi}_1^0 e^+ \nu_e) \sim 11\%$ and $BR(\tilde{\chi}_1^+ \to \tilde{\chi}_1^0 \bar{s}c) \sim 33\%$

$ ightarrow$ excellent $ ilde{\chi}_1^{\pm}$!	\sqrt{s}/GeV	$\left(P_{e^-},P_{e^+}\right)$	$\sigma(\tilde{\chi}_1^+\tilde{\chi}_1^-)/\operatorname{fb}$	$\sigma(\tilde{\chi}_1^0\tilde{\chi}_2^0)/{\rm fb}$	$\sigma(ilde{\chi}_2^0 ilde{\chi}_2^0)/{ m fb}$
$ ightarrow ilde{\chi}^0_{1,2}$ rates challenging!	400	(-90%, +60%)	4811.3±6.9	0.7±0.1	$0.2{\pm}0.0$
		(0, 0)	1583.1±4.0	0.3±0.1	< 0.1
		(+90%, -60%)	$64.7{\pm}0.8$	< 0.1	< 0.1
Today: take	500	(-90%, +60%)	3041.7±5.5	$1.0{\pm}0.1$	0.5±0.1
$ ilde{\chi}^+_1 ilde{\chi}^1$ only!		(0, 0)	1000.6±3.2	0.3±0.1	< 0.1
		(+90%, -60%)	40.3±0.6	< 0.1	< 0.1

 \Rightarrow Which observables could be used? How to get the fundamental SUSY parameters? GMP ea '99

How to get the masses?


• exploit lepton energy distribution or hadronic invariant mass distribution Processes: $e^+e^- \rightarrow \tilde{\chi}_1^+ \tilde{\chi}_1^-$ and decays

⇒ Both distributions are suitable (together with threshold scan) we assume $m_{\tilde{\chi}_1^0} \sim 0.5$ GeV, $m_{\tilde{\chi}_1^\pm} \sim 0.2$ GeV ⇒ apply now 'usual' parameter stategy with masses and cross sections

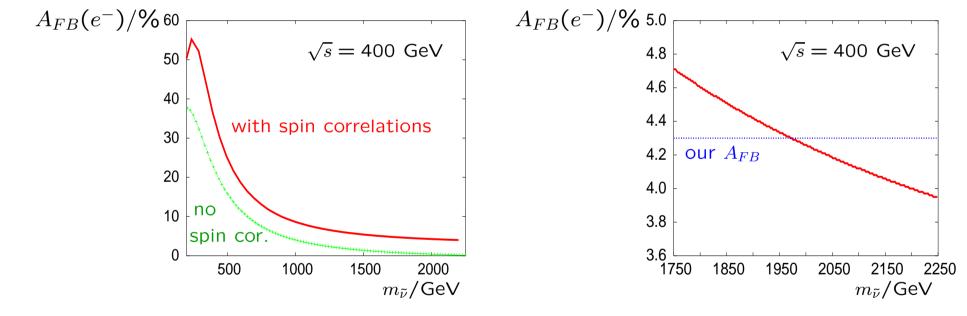
Short intermezzo

• Dependence of decay energy distribution on spin correlations: Processes: $e^+e^- \rightarrow \tilde{\chi}_1^+ \tilde{\chi}_1^-$, $\tilde{\chi}_1^- \rightarrow \tilde{\chi}_1^0 e^- \bar{\nu}$

 \Rightarrow Shape depends on spin correlations

 \Rightarrow today: we are using only the kinematical endpoints

Parameter determination – preliminary


Processes: $e^+e^- \rightarrow \tilde{\chi}_1^+ \tilde{\chi}_1^-, \tilde{\chi}_1^+ \rightarrow \tilde{\chi}_1^0 e^- \bar{\nu}$ in our scenario... Assumptions: ILC: $\delta m_{\tilde{\chi}_1^\pm} \sim 0.2$ GeV (threshold scan) and $\delta m_{\tilde{\chi}_1^0} \sim 0.5$ GeV LHC: $\delta m_{\tilde{\chi}_2^0} \sim 0.5$ GeV ILC: δ (pol. cross sections×BR) up to 0.5 fb Methods to get parameters: Feng ea '94, Tsukamoto ea '95, Baer ea '96, Kneur ea. '99, GMP'98,'00, Choi'98,'00,'01, ... fit-results wo A_{FB} of e^- : M_1 /GeV~ 60.0 ± 0.6, M_2 /GeV~ 121 ± 2, μ /GeV~ [440,800], $m_{\tilde{\nu}}$ /GeV= 2000 ± 250

(used modified fittino see talk Philip Bechtle, however fixed $\tan \beta$ – so far)

- gaugino parameters M_1 , M_2 rather well determined
- \Rightarrow but μ very weak clear, $\tilde{\chi}_1^{\pm}$ only gaugino–like
- \Rightarrow also $m_{\tilde{\nu}}$ very inaccurate also clear, since very heavy
 - \rightarrow kinematically suppressed
- Which other observable could be useful?

A_{FB} of decay f: chargino production and decay

- known proposals: $m_{\tilde{\nu}}$ from $\sigma(\tilde{\chi}_1^+ \tilde{\chi}_1^-)$ production only
- here other method needed: use A_{FB} of final decay ℓ ! Processes: $e^+e^- \rightarrow \tilde{\chi}_1^+ \tilde{\chi}_1^-, \tilde{\chi}_1^- \rightarrow \tilde{\chi}_1^0 e^- \bar{\nu}$

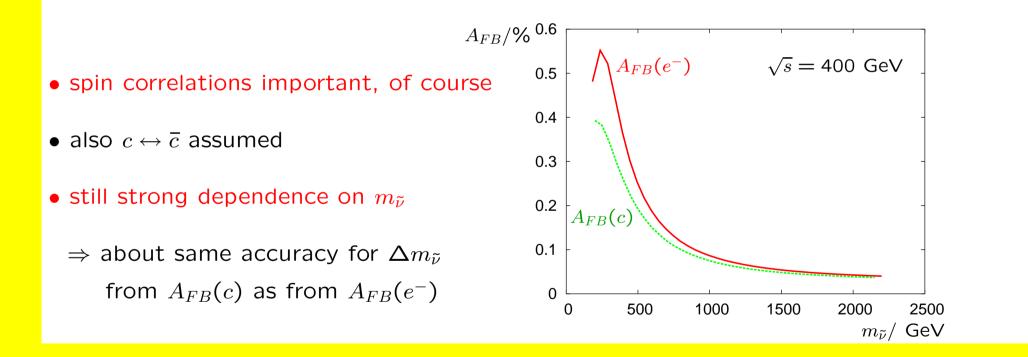
spin correlations important: large effect!

• strong dependence on $m_{ ilde{
u}}$

 \Rightarrow since $\Delta(A_{FB}) \sim 0.2\% \rightarrow$ seems to be useful for heavy $m_{\tilde{\nu}}$ \Rightarrow redo the fit including A_{FB}

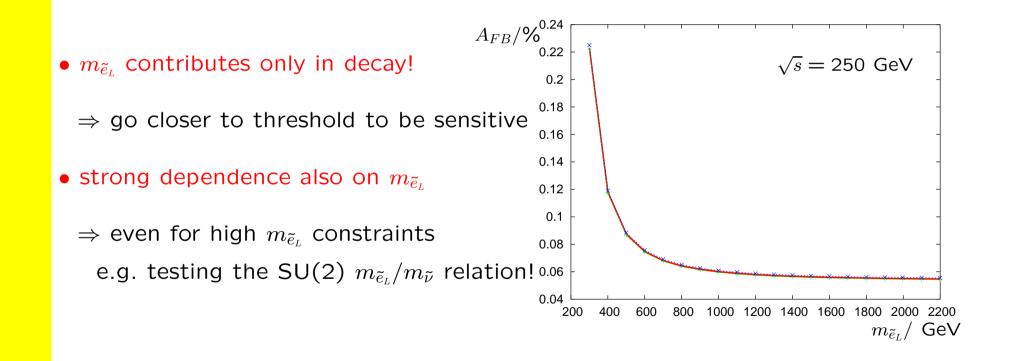
Baer et al. '95

GMP ea '99


Constraining of $m_{\tilde{\nu}}$ with A_{FB} of e^- : some results Processes: $e^+e^- \rightarrow \tilde{\chi}_1^+ \tilde{\chi}_1^-, \tilde{\chi}_1^+ \rightarrow \tilde{\chi}_1^0 e^- \bar{\nu}$ in our scenario... Assumptions – again: ILC: $\delta m_{\tilde{\chi}_1^{\pm}} \sim 0.2$ GeV (threshold scan) and $\delta m_{\tilde{\chi}_1^{0}} \sim 0.5$ GeV LHC: $\delta m_{\tilde{\chi}_2^0} \sim 0.5$ GeV ILC: δ (pol. cross sections×BR) up to 0.5 fb fit-results wo A_{FB} of e^- : $M_1/\text{GeV} \sim 60.0 \pm 0.6$, $M_2/\text{GeV} \sim 121 \pm 2$, $\mu/\text{GeV} \sim [440, 800], \ m_{\tilde{\nu}}/\text{GeV} = 2000 \pm 250$ but now: fit-results w A_{FB} of e^- : $M_1/\text{GeV} \sim 60.0 \pm 0.5$, $M_2/\text{GeV} \sim 121 \pm 0.3$, $\mu/\text{GeV} \sim 533 \pm 6.5, \ m_{\tilde{\nu}}/\text{GeV} = 1992 \pm 17!$ next step a): fit with tan $\beta \rightarrow$ preliminary results, but w.r.t. $m_{\tilde{\nu}} \approx$ the same result next step b): $\sqrt{s} = 1$ TeV $\rightarrow \tilde{\chi}_1^+ \tilde{\chi}_2^- \sim$ few fb only! \rightarrow strong improvement in μ (and tan β) expected

 $\Rightarrow A_{FB}$ very suitable for constraining heavy $m_{\tilde{\ell},\tilde{q}}$

⇒ rather accurate parameter determination although tricky scenario!


 A_{FB} of decay f: chargino production and decay

- what's about hadronic decay?
- $m_{\tilde{\nu}}$ appears only in production: A_{FB} still sensitive? Processes: $e^+e^- \rightarrow \tilde{\chi}_1^+ \tilde{\chi}_1^-, \tilde{\chi}_1^- \rightarrow \tilde{\chi}_1^0 s\bar{c}$

⇒ unknown parameters at ILC: $m_{\tilde{\nu}_e}$, $m_{\tilde{s}}$, $m_{\tilde{c}}$ Maybe combined study with LHC? Possible interplay with LHC (very preliminary – wait for next week)

- Strategy: $m_{\tilde{q}}$ known from LHC with about $\Delta m_{\tilde{q}} \sim 5\%$
- Could we use $A_{FB}(c)$, derive $m_{\tilde{\nu}}$ and use $A_{FB}(e^-)$ for $m_{\tilde{e}_L}$? Processes: $e^+e^- \rightarrow \tilde{\chi}_1^+ \tilde{\chi}_1^-, \tilde{\chi}_1^- \rightarrow \tilde{\chi}_1^0 e^- \bar{\nu}$

 \Rightarrow Precise A_{FB} measurements leads to powerful constraints far beyond kinematical limit!

Conclusions

- Angular distributions are powerful observables
 - * spin correlations very important!
 - → if MC studies: please use corresponding program!
- With forward-backward asymmetries: excellent constraints on heavy masses
 → possible, even in challenging scenarios!
- Do not be afraid for heavy sleptons, suarks at the ILC!
- To-do list: detailed case studies for the shown observables finish the fit, also for tan β
 extension to observables at LHC (cf. also Barr'04, Smillie, Webber'05) (under work in the context of the Les Houches working group)