CP-odd and T-odd Asymmetries in Chargino and Neutralino Production and Decay

Stefan Hesselbach High Energy Physics, Uppsala University

based on

Bartl, Fraas, SH, Hohenwarter-Sodek, Moortgat-Pick, JHEP **0408** (2004) 038 [hep-ph/0406190] Bartl, Fraas, SH, Hohenwarter-Sodek, Kernreiter, Moortgat-Pick, in preparation

Snowmass Workshop 2005

August 22, 2005

Outline

Introduction

- MSSM with complex parameters
- Complex parameters in chargino/neutralino sectors
- Parameter determination in chargino/neutralino sectors
- T-odd triple product asymmetries
- CP-odd and T-odd asymmetries using transverse beam polarization
- Summary and outlook

Introduction MSSM with complex parameters

General MSSM:

Complex parameters in Higgs potential and soft SUSY breaking terms

- Physical phases of the parameters
 - M_1 : U(1) gaugino mass parameter
 - μ : Higgs-higgsino mass parameter
 - A_f : trilinear couplings of sfermions
 - $m_{\tilde{g}}$: gluino mass
- Introduction of CP violation
 - May help to explain baryon asymmetry of universe
 - Constraints from electric dipole moments (EDMs) of e, n, Hg, Tl [Ibrahim, Nath, '99; Barger, Falk, Han, Jiang, Li, Plehn, '01; Abel, Khalil, Lebedev, '01]
 [Oshimo, Nihei, Fujita, '05; Pospelov, Ritz, '05; Olive, Pospelov, Ritz, Santoso, '05]

Aim: analysis the CP structure of theory and determination of phases

Introduction Complex parameters in $ilde{\chi}^{\pm,0}$ sectors

• Chargino mass matrix:
$$X = \begin{pmatrix} M_2 & \sqrt{2} m_W s_\beta \\ \sqrt{2} m_W c_\beta & \mu \end{pmatrix}$$

Neutralino mass matrix:

$$Y = \begin{pmatrix} M_1 & 0 & -m_Z s_W c_\beta & m_Z s_W s_\beta \\ 0 & M_2 & m_Z c_W c_\beta & -m_Z c_W s_\beta \\ -m_Z s_W c_\beta & m_Z c_W c_\beta & 0 & -\mu \\ m_Z c_W c_\beta & -m_Z c_W s_\beta & -\mu & 0 \end{pmatrix}$$

 $s_{\beta} \equiv \sin \beta, c_{\beta} \equiv \cos \beta$

- μ : Higgs-higgsino mass parameter $\rightarrow |\mu|, \varphi_{\mu}$
- M_1 : U(1) gaugino mass parameter $\rightarrow |M_1|, \varphi_{M_1}$
- M_2 : SU(2) gaugino mass parameter
- Diagonalization \Rightarrow complex mixing matrices \rightarrow enter $\tilde{\chi}^{\pm}$, $\tilde{\chi}^{0}$ couplings

Parameter determination

CP-even observables: cross sections, masses, ...

[Choi, Djouadi, Song, Zerwas, hep-ph/9812236] [Kneur, Moultaka, hep-ph/9907360, hep-ph/9910267] [Barger, Han, Li, Plehn, hep-ph/9907425] [Choi, Guchait, Kalinowski, Zerwas, hep-ph/0001175] [Choi, Djouadi, Guchait, Kalinowski, Song, Zerwas, hep-ph/0002033] [Choi, Kalinowski, Moortgat-Pick, Zerwas, hep-ph/0108117, hep-ph/0202039] [Gounaris, Mouël, hep-ph/0204152] [Choi, Drees, Gaissmaier, hep-ph/0403054]

 \rightarrow Determination of $|\mu|$, φ_{μ} , $|M_1|$, φ_{M_1} , M_2 , tan β in principle possible

However: ambiguities for phases remain

CP-odd/T-odd observables needed recent studies e.g. [Choi, Kim, hep-ph/0311037] [Choi, hep-ph/0308060, hep-ph/0409050] [Aguilar-Saavedra, hep-ph/0403243, hep-ph/0404104, hep-ph/0410068] [Eberl, Gajdosik, Majerotto, Schraußer, hep-ph/0502112] [Choi, Chung, Kalinowski, Kim, Rolbiecki, hep-ph/0504122] [Frank, Turan, de la Cruz do Oña, hep-ph/0508130]

Parameter determination

Comparison of real and complex scenarios

Scenario	$ M_1 $	ϕ_{M_1}	<i>M</i> ₂	μ	ϕ_{μ}	aneta	$m_{ ilde{e}_L}$	$m_{\tilde{e}_R}$
real	180	0	300	335	0	3	300	180
complex	181	0.04π	305	328	1.91 π	3.2	297	181

• CP-even observables at $\sqrt{s} = 500$ GeV ILC:

	$m_{\tilde{\chi}_1^0}$	$m_{ ilde{\chi}^{0}_{2}}$	$\sigma(e^+e^- ightarrow ilde{\chi}^0_1 ilde{\chi}^0_2)$ for $(\mathcal{P}_{e^-}, \mathcal{P}_{e^+})$ =					
Scenario			(0,0)	(-80%, +60%)	(+80%, -60%)			
real	170.0	254.2	18.3	20.2	34.0			
complex	169.1	252.3	18.2	19.7	34.1			

CP-odd observables:

real: all CP-odd/T-odd asymmetries = 0 complex: A_T = 5.2% for $(\mathcal{P}_{e^-}, \mathcal{P}_{e^+})$ = (-80%, +60%) A_{CP} = 4.1% (with transverse polarization)

T-odd triple product asymmetries

Chargino/neutralino production with subsequent three-body decays

$$e^+e^- \longrightarrow \tilde{\chi}_i + \tilde{\chi}_j \longrightarrow \tilde{\chi}_i + \tilde{\chi}_1^0 f \bar{f}^{(\prime)}$$

- Full spin correlation between production and decay [Moortgat-Pick, Fraas, '97; Moortgat-Pick, Fraas, Bartl, Majerotto, '98, '99; Choi, Song, Song, '99]
- Amplitude squared $|T|^2 = PD + \sum_{P}^{a} \sum_{D}^{a}$
- In Σ_P^a and Σ_D^a : products like $i\epsilon_{\mu\nu\rho\sigma}p_i^{\mu}p_j^{\nu}p_k^{\rho}p_l^{\sigma}$
 - \Rightarrow with complex couplings: real contributions to observables
 - \Rightarrow CP violation at tree level

T-odd triple product asymmetries

Triple products:
$$\begin{aligned} \mathcal{T} = \vec{p}_{e^-} \cdot (\vec{p}_f \times \vec{p}_{f'})) \text{ or } \mathcal{T} = \vec{p}_{e^-} \cdot (\vec{p}_{\tilde{\chi}_j} \times \vec{p}_f) \end{aligned}$$
$$\rightarrow \text{T-odd asymmetry:} \qquad A_T = \frac{\sigma(\mathcal{T} > 0) - \sigma(\mathcal{T} < 0)}{\sigma(\mathcal{T} > 0) + \sigma(\mathcal{T} < 0)} = \frac{\int \text{sign}(\mathcal{T}) |T|^2 d\text{Lips}}{\int |T|^2 d\text{Lips}} \end{aligned}$$

 \rightarrow CP-odd, if final state interactions and finite-widths effects can be neglected

T-odd asymmetry in $ilde{\chi}^0$ sector

Asymmetry A_T

$$\text{for } e^+ e^- \to \tilde{\chi}^0_1 \tilde{\chi}^0_2 \to \tilde{\chi}^0_1 \tilde{\chi}^0_1 \ell^+ \ell^-, \quad \mathcal{T} = \vec{p}_{e^-} \cdot (\vec{p}_{\ell^+} \times \vec{p}_{\ell^-})$$

[Bartl, Fraas, SH, Hohenwarter-Sodek, Moortgat-Pick, hep-ph/0406190]

• φ_{M_1} dependence $\tan \beta = 10, M_2 = 300 \text{ GeV}, |M_1| = 150 \text{ GeV}, |\mu| = 200 \text{ GeV}, \varphi_{\mu} = 0$ $m_{\tilde{e}_L}$ = 267.6 GeV, $m_{\tilde{e}_R}$ = 224.4 GeV, \mathcal{P}_{e^-} = -0.8, \mathcal{P}_{e^+} = +0.6 $\sigma(e^+e^- \rightarrow \tilde{\chi}_1^0 \tilde{\chi}_2^0) \cdot BR(\tilde{\chi}_2^0 \rightarrow \tilde{\chi}_1^0 \ell^+ \ell^-)/\mathsf{fb}$ A_T in % 12 \sqrt{s} = 350 GeV 10 10 $\sqrt{s} = 500 \text{ GeV}$ 5 8 0 6 -5 4 2 -10 0 0.5 1.5 0.5 1.5 0 1 0 φ_{M_1}/π φ_{M_1}/π $\rightarrow A_T$ larger closer to threshold (spin correlations)

T-odd asymmetry in $ilde{\chi}^0$ sector

Polarization dependence

[POWER report, hep-ph/0507011]

$$\begin{split} &\tan\beta = 10,\,M_2 = 300~{\rm GeV},\,|M_1| = 150~{\rm GeV},\,|\mu| = 200~{\rm GeV},\,\varphi_\mu = 0 \\ &m_{\tilde{e}_L} = 267.6~{\rm GeV},\,m_{\tilde{e}_R} = 224.4~{\rm GeV},\,\sqrt{s} = 500~{\rm GeV} \end{split}$$

 $\rightarrow e^-$ polarization considerably enhances A_T

 $\rightarrow e^+$ polarization enhances rate

T-odd asymmetry in $ilde{\chi}^0$ sector

Asymmetry A_T for $e^+e^- \rightarrow \tilde{\chi}_1^0 \tilde{\chi}_2^0 \rightarrow \tilde{\chi}_1^0 \tilde{\chi}_1^0 q\bar{q}$, q = c, b, $\mathcal{T} = \vec{p}_{e^-} \cdot (\vec{p}_q \times \vec{p}_{\bar{q}})$

▶ Asymmetry A_T of same order of magnitude as for $\tilde{\chi}^0_2 \rightarrow \tilde{\chi}^0_1 e^+ e^-$

▶ Cross section $\sigma(e^+e^- \rightarrow \tilde{\chi}_1^0 \tilde{\chi}_2^0 \rightarrow \tilde{\chi}_1^0 \tilde{\chi}_1^0 q \bar{q})$ can be a factor 5–10 larger

However:

- Distinction of b and \overline{b} or c and \overline{c} required
- Resolution of jet momenta worse than for leptonic decays

T-odd asymmetry in $ilde{\chi}^{\pm}$ sector

Asymmetry A_T for $e^+e^- \rightarrow \tilde{\chi}_2^- \tilde{\chi}_1^+ \rightarrow \tilde{\chi}_2^- \tilde{\chi}_1^0 c\bar{s}$, $\mathcal{T} = \vec{p}_{e^-} \cdot (\vec{p}_{\bar{s}} \times \vec{p}_c)$ [Bartl, Fraas, SH, Hohenwarter-Sodek, Moortgat-Pick, in preparation]

 \rightarrow tagging of *c* jet important

 $\tan \beta = 5, M_2 = 150 \text{ GeV}, |M_1| = M_2 5/3 \tan^2 \theta_W, |\mu| = 320 \text{ GeV}, m_{\tilde{\nu}} = 250 \text{ GeV}, m_{\tilde{u}_L} = 500 \text{ GeV}, \sqrt{s} = 500 \text{ GeV}, (\mathcal{P}_{e^-}, \mathcal{P}_{e^+}) = (-0.8, +0.6), (\mathcal{P}_{e^-}, \mathcal{P}_{e^+}) = (+0.8, -0.6)$

T-odd asymmetry in $ilde{\chi}^{\pm}$ sector

Asymmetry A_T for $e^+e^- \rightarrow \tilde{\chi}_2^- \tilde{\chi}_1^+ \rightarrow \tilde{\chi}_2^- \tilde{\chi}_1^0 \ell^+ \nu$, $\mathcal{T} = \vec{p}_{e^-} \cdot (\vec{p}_{\tilde{\chi}_1^+} \times \vec{p}_{\ell^+})$ \rightarrow reconstruction of $\vec{p}_{\tilde{\chi}_1^+}$ with information from $\tilde{\chi}_2^-$ decay

 $\tan \beta = 5, M_2 = 120 \text{ GeV}, |M_1| = M_2 5/3 \tan^2 \theta_W, |\mu| = 320 \text{ GeV}, m_{\tilde{\nu}} = 250 \text{ GeV}, m_{\tilde{u}_L} = 500 \text{ GeV}, \sqrt{s} = 500 \text{ GeV}, P_{e^-} = -0.8, P_{e^+} = +0.6$

T-odd asymmetries for two-body decays

Chargino/neutralino production with subsequent two-body decays

Leptonic decays:

 $e^+e^- \rightarrow \tilde{\chi}^0_1 + \tilde{\chi}^0_2 \rightarrow \tilde{\chi}^0_1 + \tilde{\ell}\ell_1, \quad \tilde{\ell} \rightarrow \tilde{\chi}^0_1\ell_2 \quad (\ell = e, \mu, \tau)$ [Bartl, Fraas, Kittel, Majerotto, hep-ph/0308141, hep-ph/0308143] [Bartl, Fraas, Kernreiter, Kittel, W. Majerotto, hep-ph/0310011]

$$e^+e^- \rightarrow \tilde{\chi}^-_i + \tilde{\chi}^+_j \rightarrow \tilde{\chi}^-_i + \tilde{\nu}\ell^+$$

[Bartl, Fraas, Kittel, Majerotto, hep-ph/0406309]

Decays into Z and W:

 $e^+e^- \rightarrow \tilde{\chi}^0_i + \tilde{\chi}^0_j \rightarrow \tilde{\chi}^0_i + \tilde{\chi}^0_n Z, \quad Z \rightarrow \ell \bar{\ell}, q \bar{q}$ [Bartl, Fraas, Kittel, Majerotto, hep-ph/0402016]

 $e^+e^- \rightarrow \tilde{\chi}_i^- + \tilde{\chi}_j^+ \rightarrow \tilde{\chi}_i^- + \tilde{\chi}_n^0 W^+, \quad W^+ \rightarrow c\bar{s}$ [Bartl, Fraas, Kernreiter, Kittel, Majerotto, hep-ph/0410054]

• CP asymmetries using tau polarization for $\ell = \tau$ [Bartl, Kernreiter, Kittel, hep-ph/0309340; Choi, Drees, Gaissmaier, Song, hep-ph/0310284]

Chargino/neutralino production

$$e^+e^- \longrightarrow \tilde{\chi}_i + \tilde{\chi}_j$$

with transverse beam polarization (4-vector t^{μ}_{\pm} , polarization degree $\mathcal{P}^{T}_{e^{\pm}}$)

• Terms in amplitude squared $|T|^2 = P$ depending on $\mathcal{P}_{e^{\pm}}^T$: $P_T \sim \mathcal{P}_{e^{-}}^T \mathcal{P}_{e^{+}}^T [f_1 \Delta_1 r_1 + f_2 \Delta_2 r_2]$

 f_i : couplings; Δ_i : propagators; r_i : products of t_{\pm} and momenta

 \Rightarrow both beams have to be polarized (in limit $m_e = 0$!) [POWER report, hep-ph/0507011]

• r_1 is real; r_2 is imaginary, consisting of products like $i\epsilon_{\mu\nu\rho\sigma}t^{\mu}_{\pm}p^{\nu}_i p^{\rho}_j p^{\sigma}_k$

 \Rightarrow with complex couplings f_2 : real contributions to observables

 \Rightarrow CP-odd terms $\sim \text{Im}(f_2\Delta_2)\text{Im}(r_2)$ at tree level

Chargino production:

Dirac particles: couplings $f_2\Delta_2$ have to be real (CPT invariance)

 \Rightarrow CP-odd terms $f_2 \Delta_2 r_2$ vanish

[Bartl, Hohenwarter-Sodek, Kernreiter, Rud, hep-ph/0403265]

 \rightarrow CP-even asymmetries can be defined with help of $f_1 \Delta_1 r_1$

Neutralino production:

Majorana particles: t and u channels contribute

- \Rightarrow CP-odd terms $f_2 \Delta_2 r_2 \neq 0$ allowed
- \Rightarrow CP-odd observables can be defined

 $f_2 \Delta_2 r_2 \sim \sin(\eta - 2\phi)$

with ϕ : azimuthal angle of scattering plane; η : orientation of transverse polarizations

- CP-odd asymmetry
 - ϕ integration:

$$A_{CP}(\theta) = \frac{1}{\sigma} \left[\int_{\frac{\eta}{2}}^{\frac{\pi}{2} + \frac{\eta}{2}} - \int_{\frac{\pi}{2} + \frac{\eta}{2}}^{\pi + \frac{\eta}{2}} + \int_{\pi + \frac{\eta}{2}}^{\frac{3\pi}{2} + \frac{\eta}{2}} - \int_{\frac{3\pi}{2} + \frac{\eta}{2}}^{2\pi + \frac{\eta}{2}} \right] \frac{d^2\sigma}{d\phi \, d\theta} d\phi$$

• θ integration:

$$A_{CP} = \left[\int_0^{\pi/2} - \int_{\pi/2}^{\pi}\right] A_{CP}(\theta) \,\mathrm{d}\theta$$

 \rightarrow 8 sectors with alternating sign

Asymmetry A_{CP} for $e^+e^- \rightarrow \tilde{\chi}_1^0 \tilde{\chi}_2^0$ [Bartl, Fraas, SH, Hohenwarter-Sodek, Kernreiter, Moortgat-Pick, in preparation] $M_2 = 245 \text{ GeV}, |M_1| = 123.3 \text{ GeV}, |\mu| = 160 \text{ GeV}, \phi_{\mu} = 0, m_{\tilde{e}_L} = 400 \text{ GeV}, m_{\tilde{e}_R} = 150 \text{ GeV}$ $\sqrt{s} = 500 \text{ GeV}, (\mathcal{P}_{e^-}^T, \mathcal{P}_{e^+}^T) = (100\%, 100\%)$ $\tan \beta = 3, 10, 30$

Asymmetries including neutralino decay

$$e^+e^- \to \tilde{\chi}_i^0 + \tilde{\chi}_j^0 \to \tilde{\chi}_i^0 + \tilde{\ell}_{L,R}^{\pm}\ell_1^{\mp} \to \tilde{\chi}_i^0 + \tilde{\chi}_1^0\ell_1^{\mp}\ell_2^{\pm}$$

•
$$A_{1}^{\mp} = \frac{1}{\sigma_{1}} \left[\int_{\frac{\eta}{2}}^{\frac{\pi}{2} + \frac{\eta}{2}} - \int_{\frac{\pi}{2} + \frac{\eta}{2}}^{\pi + \frac{\eta}{2}} + \int_{\pi + \frac{\eta}{2}}^{\frac{3\pi}{2} + \frac{\eta}{2}} - \int_{\frac{3\pi}{2} + \frac{\eta}{2}}^{2\pi + \frac{\eta}{2}} \right] \frac{\mathrm{d}\sigma_{1}}{\mathrm{d}\phi_{\ell_{1}^{\mp}}} \mathrm{d}\phi_{\ell_{1}^{\mp}}$$

with $\sigma_{1} = \sigma(e^{+}e^{-} \to \tilde{\chi}_{i}^{0}\tilde{\chi}_{j}^{0}) \times BR(\tilde{\chi}_{j}^{0} \to \tilde{\ell}\ell_{1})$

•
$$A_2^{\pm} = \frac{1}{\sigma_2} \left[\int_{\frac{\eta}{2}}^{\frac{\pi}{2} + \frac{\eta}{2}} - \int_{\frac{\pi}{2} + \frac{\eta}{2}}^{\pi + \frac{\eta}{2}} + \int_{\pi + \frac{\eta}{2}}^{\frac{3\pi}{2} + \frac{\eta}{2}} - \int_{\frac{3\pi}{2} + \frac{\eta}{2}}^{2\pi + \frac{\eta}{2}} \right] \frac{\mathrm{d}\sigma_2}{\mathrm{d}\phi_{\ell_2^{\pm}}} \mathrm{d}\phi_{\ell_2^{\pm}}$$

with $\sigma_1 = \sigma(e^+e^- \to \tilde{\chi}_i^0 \tilde{\chi}_j^0) \times BR(\tilde{\chi}_j^0 \to \tilde{\ell}\ell_1) \times BR(\tilde{\ell} \to \tilde{\chi}_1^0 \ell_2)$

→ Distinguishing of ℓ_1 and ℓ_2 necessary (energy/angular distributions) → $A_i^- = -A_i^+$

Asymmetries including neutralino decay

•
$$A'^{-} = \frac{(\int^{+} - \int^{-})(\frac{d\sigma_{1}}{d\phi_{\ell_{1}}}d\phi_{\ell_{1}} + \frac{d\sigma_{2}}{d\phi_{\ell_{2}}}d\phi_{\ell_{2}})}{\int_{0}^{2\pi}(\frac{d\sigma_{1}}{d\phi_{\ell_{1}}}d\phi_{\ell_{1}} + \frac{d\sigma_{2}}{d\phi_{\ell_{2}}}d\phi_{\ell_{2}})} = \frac{A_{1}^{-} + A_{2}^{-}BR(\tilde{\ell} \to \ell\tilde{\chi}_{1}^{0})}{1 + BR(\tilde{\ell} \to \ell\tilde{\chi}_{1}^{0})}$$

 \int^{\pm} : integration over regions where $\sin(\eta - 2\phi_{1,2})$ is positive/negative

 \rightarrow Only measurement of charges of ℓ_1 and ℓ_2 necessary (no distinguishing of ℓ_1 and ℓ_2 required)

Conclusions

- T-odd/CP-odd asymmetries in chargino/neutralino production + decay
- T-odd triple product asymmetries
 - \rightarrow full spin correlations between production and decay necessary
- CP-odd asymmetries with transverse beam polarization
 - \rightarrow both beams have to be polarized
- Charginos: leptonic decays: reconstruction of $p(\tilde{\chi}^+)$ hadronic decays: discrimination of $c \leftrightarrow s$ jets
- Neutralinos: hadronic decays: discrimination of $c \leftrightarrow \bar{c}$ or $b \leftrightarrow \bar{b}$
- Beam polarization is important
- **Solution** Asymmetries of $\mathcal{O}(20\%)$ possible
 - \Rightarrow important tool for \rightarrow search for CP violation in SUSY

 \rightarrow unambiguous determination of SUSY phases