Why the EGRET excess points to heavy scalars

What is the EGRET excess?

Excess of diffuse gamma rays above 1 GeV compared with background (mainly pp-> π^0)

Can DM Annihilation (DMA) explain it?

DMA into quark pairs-> π^0 decays-> Excess in galactic Gammarays in ALL sky directions with SAME shape

Halo-profile from all sky directions-> RECONSTRUCT ROTATION CURVE

 EGRET excess consistent with mSUGRA + ALL constraints if scalars are in TeV range

August. 22, 2005

The EGRET excess of diffuse galactic gamma rays without and with DM annihilation

Fit only KNOWN shapes of BG + DMA, i.e. 1 or 2 parameter fit NO GALACTIC models needed. Propagation of gammas straightforward

Gamma ray flux measured towards Galactic center

August. 22, 2005

inverse Compton scattering (e-+ γ -> e- + γ) Bremsstrahlung (e- + N -> e- + γ + N)

Shape of background KNOWN if Cosmic Ray spectra of p and e- known

August. 22, 2005

What about signal shape?

August. 22, 2005

Momentum dependence of contributions to DM annihilation

Z-exchange $\propto N_{3,4}^2$ with both s- and p-wave A-exchange $\propto N_1N_{3,4}$ only s-wave (p-independent)

August. 22, 2005

Gamma Spectra from WIMP Annihilation

Conventional Model without DMA in 6 sky regions

Conventional Model with DMA in 6 sky regions

"Executive Summary"

August. 22, 2005

2005 ALCPG & ILC Snowmass Workshop, W. de Boer, Univ. Karlsruhe

9

Allowed WIMP mass

WIMP Mass from EGRET: 50-70 GeV in CM 50-100 GeV in CM+OM

August. 22, 2005

Allowed mSUGRA region

August. 22, 2005

2005 ALCPG & ILC Snowmass Workshop, W. de Boer, Univ. Karlsruhe

11

tanß dependence of relic density

August. 22, 2005

Relic density extremely sensitive to tb at large tb. Determining relic density at colliders $\rightarrow \Delta tb \approx 0.1$

Sensitivity from fast running of Higgs mass terms: $m_A^2 = m_1^2 + m_2^2$

August. 22, 2005

http://kraml.home.cern.ch/kraml/cgi-bin/micromegas_slha.cgi

Sparticle	Isajet	Softsusy	Spheno	Suspect	(max-min)	diff[%]	Your input was	
nt_1	55.95	60.29	60.77	60.27	4.81	8.12	------------	
nt_2	101.90	114.67	116.60	114.40	14.70	13.14	mO = 1500	
nt_3	203.80	295.84	338.39	292.99	134.60	47.60	m12 = 150	
nt_4	231.70	308.31	348.00	305.71	116.30	38.97	AO = 0	
ch_1	102.23	114.42	116.65	114.13	14.42	12.89	tan(be) = 53	
ch_2	231.38	310.98	351.35	308.38	119.97	39.92	sgn(mu) = 1 mt = 175	
gluino	448.18	430.90	426.35	455.07	28.72	6.53	mb = 4.214	
h0	115.08	114.79	115.12	114.75	0.37	0.33	alphas(MZ) = 0.1172	
H0	411.12	358.84	439.27	240.08	199.20	54.98		
A0	408.40	358.86	439.32	239.93	199.39	55.14		
H+	423.01	369.53	447.77	256.47	191.29	51.12		
snu_e	1497.63	1494.16	1496.04	1494.19	3.47	0.23		
snu_mu	1497.63	1493.49	1495.34	1494.19	4.14	0.28		
snu_tau	1288.93	1280.20	1283.31	1275.56	13.37	1.04		
sel_L	1500.10	1496.21	1499.09	1496.25	3.89	0.26		
sel_R	1499.66	1498.67	1499.29	1498.69	0.99	0.07		
smu_L	1500.10	1495.55	1497.48	1496.25	4.55	0.30		
smu_R	1499.66	1497.33	1498.80	1498.69	2.33	0.16		
stau_1	1038.26	1023.47	1026.87	1010.95	27.31	2.66		
stau_2	1291.64	1283.06	1286.75	1278.42	13.22	1.03		

August. 22, 2005

http://kraml.home.cern.ch/kraml/cgi-bin/micromegas_slha.cgi

sc_L	1514.47	1509.54	1522.26	1509.79	12.72	0.84
sc_R	1518.61	1513.77	1517.48	1513.87	4.83	0.32
stop_1	899.33	873.58	865.43	874.17	33.90	3.86
stop_2	1041.07	1011.74	1022.92	1006.12	34.95	3.42
sbot_1	1023.22	996.70	1007.09	997.69	26.52	2.64
sbot_2	1131.25	1110.56	1126.60	1110.11	21.14	1.89
omega	2.47e-03	4.77e-01	1.30e+00	8.97e-02	1.29e+00	277.52
deltarho	9.30e-05	3.88e-05	3.84e-05	1.68e-06	9.14e-05	212.62
gmuon	1.18e-09	9.84e-10	9.63e-10	9.87e-10	2.20e-10	21.35
bsgamma	2.84e-04	2.86e-04	2.73e-04	3.18e-04	4.52e-05	15.56
bsmumu	5.18e-09	1.26e-08	9.74e-09	5.02e-08	4.51e-08	231.87

August. 22, 2005

Parameter scan confirms large tb and large mO All points have correct relic density

August. 22, 2005

2005 ALCPG & ILC Snowmass Workshop, W. de Boer, Univ. Karlsruhe

16

Why large tanß preferred?

Answer: pseudoscalar Higgs exchange is s-wave contribution, i.e. independent of momentum -> large self-annihilation in present universe! BUT ONLY DOMINANT AT LARGE TANB!

Note: Z-exchange = largely p wave -> if dominant, than almost no indirect DM detection possible (unless extreme clustering of DM allowed)

WW, ZZ kinematically suppressed by light LSP sfermion t-channel suppressed by heavy scalars

August. 22, 2005

Annihilation cross sections in m₀-m_{1/2} plane (µ > 0, A₀=0) tan=5 tan=50

For WMAP x-section of $\langle \sigma v \rangle \cong 2.10^{-26}$ cm³/s one needs large tan β

August. 22, 2005

Gauge unification perfect with SUSY spectrum from EGRET

Summary on evidence for DMA

Interpretation of EGRET excess as DM Annihilation can:

- 1) explain all features of EGRET excess
- 2) determine WIMP mass (50-100 GeV)
- 3) determine the DM halo profile
- 4) explain peculiar shape of rotation curve
- 5) statistical significance > 10 ol

Reconstruction of rotation curve from GAMMA RAYS-> EGRET excess = Tracer of Dark Matter!

Results practical model independent, since only KNOWN spectral shapes of signal and background are used, NOT model dependent calculations of absolute fluxes.

August. 22, 2005

EGRET excess:

LSP light (50-70 GeV preferred, 50-100 GeV possible)

Higgs limit requires then:

EWSB (and g-2) require:

squarks and sleptons above ~ TeV

squarks and sleptons ≤ 2 TeV

tanβ ≈ 50-55 preferred

LSP:

mostly binolike (98%) (->DM is SUSY partner of CMB) no coannihilation bulk annihilation with A-exchange dominant, but not on A-resonance

August. 22, 2005