Implications of non-universal SUGRA models at ILC

Alexander Belyaev

Michigan State University

- The present status of mSUGRA
- Motivations for non-universality in SUGRA
- One-parameter extensions of mSUGRA minimal non-universal SUGRA models
 - parameter space
 - relic density, $b
 ightarrow s\gamma$, g-2 constraints
 - dark matter search experiments
 - collider signatures
- Conclusions and outlook

- **SUSY** is not observed \Rightarrow must be broken
- hidden-messenger-visible sectors scenarios:
 - SUGRA GMSB AMSB inoMSB

▶ SUGRA: the hidden sector communicates with visible one via gravity – all soft terms are non-zero in general ($\sim m_{3/2}$ -gravitino mass)

- **SUSY** is not observed \Rightarrow must be broken
- hidden-messenger-visible sectors scenarios:
 - SUGRA GMSB AMSB inoMSB

► SUGRA: the hidden sector communicates with visible one via gravity
– all soft terms are non-zero in general(~ m_{3/2} -gravitino mass)
SUGRA: $M_a = f_a \frac{\langle F \rangle}{M_P}$ $m_{ij}^2 = k_{ij} \frac{|\langle F \rangle|^2}{M_P^2}$ $A_{ijk} = y_{ijk} \frac{\langle F \rangle}{M_P}$

- **SUSY** is not observed \Rightarrow must be broken
- hidden-messenger-visible sectors scenarios:
 - SUGRA GMSB AMSB inoMSB

► SUGRA: the hidden sector communicates with visible one via gravity

all soft terms are non-zero in general(~ m_{3/2} -gravitino mass)
SUGRA: $M_a = f_a \frac{\langle F \rangle}{M_P}$ $m_{ij}^2 = k_{ij} \frac{|\langle F \rangle|^2}{M_P^2}$ $A_{ijk} = y_{ijk} \frac{\langle F \rangle}{M_P}$ mSUGRA: $\implies m_{1/2}$ $\implies m_0^2$ $\implies A_0$

- ► SUSY is not observed ⇒ must be broken
- hidden-messenger-visible sectors scenarios:
 - SUGRA GMSB AMSB inoMSB

► SUGRA: the hidden sector communicates with visible one via gravity – all soft terms are non-zero in general(~ $m_{3/2}$ -gravitino mass) SUGRA: $M_a = f_a \frac{\langle F \rangle}{M_P}$ $m_{ij}^2 = k_{ij} \frac{|\langle F \rangle|^2}{M_P^2}$ $A_{ijk} = y_{ijk} \frac{\langle F \rangle}{M_P}$ mSUGRA: $\implies m_{1/2}$ $\implies m_0^2$ $\implies A_0$ flat Kähler metric takes care of constraining of Flavor violating processes

- ▶ $sign(\mu)$, μ^2 value is fixed by the minim condition for Higgs potential
- ▶ B parameter usually expressed via $tan \beta$
- $\blacktriangleright \Rightarrow$ mSUGRA parameters: $m_0, m_{1/2}, A_0, \tan\beta, sign(\mu)$

Hunting for SUSY

One calculate SUSY mass spectrum

Hunting for SUSY

One calculate SUSY mass spectrum

and test against experiments

- SUSY dark matter search (under R-parity): neutralino relic density, Ωh² (WMAP result) direct DM search, σ_{Z̃1p} (CDMS/EDELWEIS/ZEPLIN/DAMA/CRESST/GENIUS...) indirect DM search, ν_μ (Antares/ICECUBE), γ's (EGRET/GLASS),
 - e^+ 's (PAMELA/Ams02/HEAT), \bar{p} (BESS)
- $b
 ightarrow s\gamma$ (BELLE, CLEO, ALEPH), $B_s
 ightarrow \mu^+\mu^-$ (CDF), δa_μ (E821),
- collider search at LEP2, Tevatron, LHC, ILC

SUGRA: DM favored regions of parameter space

WMAP limit: $0.094 < \Omega_{\widetilde{Z}_1} h^2 < 0.129$

1 bulk region:

t-channel sfermion exchange

low m_0 and $m_{1/2}$

constrained by LEP2

2 stau co-annihilation region:

(low m_0 , large $m_{1/2}$)

3 the focus point (FP) region: large m_0 , low- medium $m_{1/2}$: low μ value, $M_{\widetilde{Z}_1} \sim M_{\widetilde{Z}_2} \sim M_{\widetilde{W}_1}$

Matchev, Morroi; Feng, Matchev; Barger

SUGRA: DM favored regions of parameter space

SUGRA: DM favored regions of parameter space

4 funnel region: s-channel annihilation corridor via A and H at large $\tan \beta$, takes place at high tan beta

Also: Z-/h- resonance regions, stop co-annihilation

mSUGRA constraints

Baer, Belyaev, Krupovnickas, Mustafayev, hep-ph/0403214

A.Belyaev (MSU) "Non-universal SUGRA models", Snowmass 2005, Colorado

mSUGRA:
$$\chi^2 = \chi^2_{\delta a_\mu} + \chi^2_{\Omega h^2} + \chi^2_{b
ightarrow s\gamma}$$

Baer, Belyaev, Krupovnickas, Mustafayev, hep-ph/0403214

 Δa_{μ} favors light second generation sleptons, while $BF(b \rightarrow s\gamma)$ prefers heavy third generation: hard to realize in mSUGRA model. also in hep-ph/0508169 by Ellis,Heinemeyer,Olive,Weiglein; see Georg's talk Normal Mass Hierarchy(NMH) in SUGRA

one step beyond universality solves the problem!

 $m_0, m_{1/2}, A_0, \tan \beta, \, sign(\mu) \Longrightarrow m_0^{1,2}, m_0^3, \, m_H, \, m_{1/2}, \, A_0, \, \tan \beta, \, sign(\mu)$

$\blacklozenge B_H^0 - B_L^0 = \Delta m_B$ mass splitting bound is safe

Collider implications of NHM model: the mass spectrum

approximate formula relating weak scale to GUT scale squark and slepton masses is $m_{\tilde{q}}^2\simeq m_0^2+(5-6)m_{1/2}^2$, while

 $m_{ ilde{\ell}}^2 \simeq m_0^2 + (0.15 - 0.5) m_{1/2}^2$

Collider implications of NHM model: Tevatron

- $\blacktriangleright \ p\bar{p} \rightarrow \widetilde{W}_1^+ \widetilde{W}_1^- X, \ \ \widetilde{W}_1 \widetilde{Z}_2 X \ \textit{have} \simeq \ \ \textit{lpb(!) cs for} \ m_{\widetilde{W}_1}, m_{\widetilde{Z}_2} \simeq 150 \ \textit{GeV}$
- Even if two-body decays are not kinematically open, $\simeq 100 300$ GeV $\tilde{e}, \tilde{\mu}$ yield enhancement in $\widetilde{W}_1, \widetilde{Z}_2$ 3-body decay: $\widetilde{W}_1 \rightarrow \ell \nu_\ell \widetilde{Z}_1$ and $\widetilde{Z}_2 \rightarrow \ell \bar{\ell} \widetilde{Z}_1$
- clean 3-lepton signal can be observable(!)

A.Belyaev (MSU) "Non-universal SUGRA models", Snowmass 2005, Colorado

Collider implications of NHM model: LHC

enhanced chargino and neutralino (s)leptonic branching fractions As $m_0(1)$ drops below 200 GeV, multilepton rates rise steeply.

SUSY as manifested in the NMH SUGRA model would be easily discovered.

Signal events would be unusually rich in multilepton events – especially useful for reconstructing sparticle masses in gluino and squark cascade decay events

Collider implications of NHM model: ILC

	par	value (GeV)
	M_2	351.1
	M_1	184.2
$m_0(3)$ $m_{1/2}$ A_0 $\tan\beta$ $sign(\mu)$	μ	516.9
1500 450 0 30 +1	$m_{ ilde{g}}$	1067.7
	$m_{ ilde{m{u}}_L}$	939.8
$m_0(1) = 100$	$m_{ ilde{m{u}}_R}$	910.0
	$m_{ ilde{t}_1}$	1175.1
Depending on sparticle masses and the col-	$m_{ ilde{t}_2}$	1477.5
lider energy, charginos and neutralinos may or	$m_{\tilde{e}_L}$	319.3
may not be accessible.	$m_{ ilde{e}_R}$	188.2
However, in the NMH SUGRA model, light	$m_{ ilde{ au}_1}$	1386.1
first and second aeneration sleptons are	$m_{ ilde{ au}_2}$	1475.4
needed both to explain the $(a - 2)$, anomaly.	$m_{\widetilde{W}_1}$	348.2
but also to enhance neutralino annihilation in	$m_{\widetilde{W}_2}$	542.4
the early universe.	$m_{\widetilde{Z}_1}$	179.4
This means slepton masses are typically in	$m_{\widetilde{Z}_2}^2$	347.2
the 100-300 GeV range, and likely within reach	m_A^2	1379.3
of a linear e^+e^- collider	m_h	118.4
	$\Omega_{\widetilde{Z}_1}h^2$	0.115
	$ ilde{BF}(b o s \gamma)$	$3.52 imes10^{-4}$
	Δa_{μ}	$35.1 imes10^{-10}$

• universality of m_0 is motivated by the need to suppress unwanted flavor changing processes (generation blind mech for matter scalars in SUSY GUTs)

- universality of m_0 is motivated by the need to suppress unwanted flavor changing processes (generation blind mech for matter scalars in SUSY GUTs)
- ▶ this does not apply to soft breaking Higgs masses. In SO(10) SUSY GUTs: $(10 + \overline{5} + \overline{\nu}) \in \hat{\psi}(16), (5_H, \overline{5}_H) \in \hat{\phi}(10)$, different repres \Rightarrow SUSY breaking scalar mass terms for $\hat{\psi}(16)$ and $\hat{\phi}(10)$ are not expected to be the same

- universality of m_0 is motivated by the need to suppress unwanted flavor changing processes (generation blind mech for matter scalars in SUSY GUTs)
- ▶ this does not apply to soft breaking Higgs masses. In SO(10) SUSY GUTs: $(10 + \overline{5} + \overline{\nu}) \in \hat{\psi}(16), (5_H, \overline{5}_H) \in \hat{\phi}(10)$, different repres \Rightarrow SUSY breaking scalar mass terms for $\hat{\psi}(16)$ and $\hat{\phi}(10)$ are not expected to be the same

the minimal non-universal Higgs extension of mSUGRA \Rightarrow NUHM1: $m_0, m_{\phi}, m_{1/2}, A_0, \tan\beta$ and $sign(\mu)$ $m_{\phi} = sign(m_{H_u,d}^2) \cdot \sqrt{|m_{H_{u,d}}^2|}$ $m_{H_u,d}^2$ are allowed to be negative

- universality of m_0 is motivated by the need to suppress unwanted flavor changing processes (generation blind mech for matter scalars in SUSY GUTs)
- ▶ this does not apply to soft breaking Higgs masses. In SO(10) SUSY GUTs: $(10 + \overline{5} + \overline{\nu}) \in \hat{\psi}(16), (5_H, \overline{5}_H) \in \hat{\phi}(10)$, different repres \Rightarrow SUSY breaking scalar mass terms for $\hat{\psi}(16)$ and $\hat{\phi}(10)$ are not expected to be the same

non-universal the minimal Higgs 1000 m (GeV) nSUGRA extension of mSUGRA \Rightarrow NUHM1: $m_0,\,m_\phi,\,m_{1/2},\,A_0,\, aneta$ and $sign(\mu)$ 800 $m_{\phi} = sign(m_{H_{m{u}},d}^2) \cdot \sqrt{|m_{H_{m{u}},d}^2|}$ $m_{H_u,d}^2$ are allowed to be negative 600 NO EWSB 0 V m_A Ξ 400 $2m_{z1}$ 200 m_{z1} -1000 -800 -600 200 400 600 -400 -200 m, (GeV)

- universality of m_0 is motivated by the need to suppress unwanted flavor changing processes (generation blind mech for matter scalars in SUSY GUTs)
- ▶ this does not apply to soft breaking Higgs masses. In SO(10) SUSY GUTs: $(10 + \overline{5} + \overline{\nu}) \in \hat{\psi}(16), (5_H, \overline{5}_H) \in \hat{\phi}(10), \text{ different repres} \Rightarrow \text{SUSY breaking}$ scalar mass terms for $\hat{\psi}(16)$ and $\hat{\phi}(10)$ are not expected to be the same

the minimal non-universal Higgs extension of mSUGRA \Rightarrow NUHM1: $m_0, m_{\phi}, m_{1/2}, A_0, \tan\beta$ and $sign(\mu)$ $m_{\phi} = sign(m_{H_u,d}^2) \cdot \sqrt{|m_{H_u,d}^2|}$ $m_{H_u,d}^2$ are allowed to be negative

- μ becomes small for $m_{\phi} > m_0$ \Rightarrow FP! can be reached even for low m_0 and $m_{1/2}$!
- $\begin{tabular}{ll} \hline M_A \ decrease \ down \ to \ 2m_{\widetilde{Z}_1} \ for \\ m_\phi \ going \ down \Rightarrow \ Funnel! \ Even \\ for \ low \ tan \ \beta! \ Requires \ m_\phi^2 < 0. \end{tabular}$

Baer, Belyaev, Mustafayev, Profumo, Tata

 $m_0 = 300 \text{GeV}, m_{1/2} = 300 \text{GeV}, \tan\beta = 10, A_0 = 0, \mu > 0, m_t = 178 \text{GeV}$

Scan of NUMH1 parameter space

there are always two viable solutions corresponding to FP and Funnel regions

▶ all m_{ϕ} ⇒ the signal is accessible to stage-3 DD facilities (XENON 1-ton)

- ▶ stage-2 detectors (CDMS-II) \Rightarrow probe only the HB/FP at large m_{ϕ}
- ▶ large negative $m_{\phi} \Rightarrow$ enhancement of the *t*-channel *H* exchange
- ► large positive $m_{\phi} \Rightarrow$ higgsino fraction is up $\Rightarrow \sigma_{\widetilde{Z}_{1}p}^{SI}$, neutrino telescopes
- ► muon flux from the sun ⇒ the resonant annihilation region rates below the sensitivity of IceCube (the sun capture rate is not large enough)
- funnel region gives very large rates in all channels!

Collider signatures

 Tevatron: 3ℓ from pp̄ → W̃₁Z̃₂X followed by W̃₁ → ℓν_ℓZ̃₁ and Z̃₂ → ℓℓZ̃₁. When m_φ > m₀ and |µ| is small
 ⇒ improved prospects for clean 3ℓ (no dominant events with tau leptons)

LHC: similar reach (in terms of $m_{\tilde{q}}$ and $m_{\tilde{g}}$ parameters) in the mSUGRA and NUHM1 models, but detailed gluino and squark cascade decays will change! H and AHiggs could be much lighter \Rightarrow direct production followed by $H, A \rightarrow \tau \bar{\tau}$.

NLC: In addition to "standard" mSUGRA FP signatures, H^0Z^0 , A^0h (possibly a good determ of $\tan \beta$), H^+H^- become accessible to study; $\tilde{Z}_1\tilde{Z}_3$, $\tilde{Z}_1\tilde{Z}_4$, $\tilde{Z}_2\tilde{Z}_2$, $\tilde{Z}_2\tilde{Z}_3$, $\tilde{Z}_2\tilde{Z}_4$ and even $\tilde{Z}_3\tilde{Z}_4$ as well as $\tilde{W}_1^{\pm}\tilde{W}_2^{\mp}$ are kinematically accessible.

SUSY spectroscopy would become a reality!

Two-parameter extension of mSUGRA: NUMH2 model

- NUHM2 model parameter space: m₀, m²_{Hu}, m²_{Hd}, m_{1/2}, A₀, tanβ, sign(μ) or alternatively m₀, μ, m_A, m_{1/2}, A₀, tanβ
- Motivated by GUTs where \hat{H}_u and \hat{H}_d belong to different multiplets (e.g.SU(5) GUTs)
- See also Berezinsky et al; Arnowitt and Nath; Ellis, Olive, Falk and Santoso; De Roeck, Ellis, Gianotti, Moortgat, Olive, Pape

$$\begin{array}{l} \frac{dm_{\tilde{t}_R}^2}{dt} = \frac{2}{16\pi^2} \left(-\frac{16}{15} g_1^2 M_1^2 - \frac{16}{3} g_3^2 M_3^2 - \frac{2}{5} g_1^2 S + 2 f_t^2 X_t \right) \\ \frac{dm_{\tilde{\tau}_R}^2}{dt} = \frac{2}{16\pi^2} \left(-\frac{12}{5} g_1^2 M_1^2 + \frac{3}{5} g_1^2 S + 2 f_\tau^2 X_\tau \right) \\ S = m_{H_u}^2 - m_{H_d}^2 + Tr \left[m_Q^2 - m_L^2 - 2 m_U^2 + m_D^2 + m_E^2 \right] \\ S \gg 0 : \tilde{\tau}_R, \ \tilde{e}_R, \ \tilde{\mu}_R \ \text{are suppressed,} \quad \tilde{u}_R, \ \tilde{c}_R, \ \tilde{t}_R \ \text{are enhanced} \\ S \ll 0 : \tilde{\tau}_R, \ \tilde{e}_R, \ \tilde{\mu}_R \ \text{are enhanced,} \ \tilde{u}_R, \ \tilde{c}_R, \ \tilde{t}_R \ \text{are suppressed} \end{array}$$

Scan of NUHM2 space: (μ, m_A) plane

0

250

500

μ (GeV) Ah 900 800 $m_A \sim 250 GeV$ - funnel region GS 700 Large m_A - $ilde{
u}_ au, ilde{ au}$ CO-HS 600 annihilation 500 Small μ - HB/FP region **mSUGRA** 400 Best fit area: 300 NUHM1 $m_A \sim 300 GeV, \ \mu \sim 130 GeV$ 200 100 LEP2

NUHM2: m_0 =300GeV, $m_{1/2}$ =300GeV, $tan\beta$ =10, A_0 =0, m_t =178GeV

750 1000 1250 1500 1750 2000

5

4.5

4

3.5

3

2.5

2

1.5

1

0.5

n

 m_{Δ} (GeV)

Collider implications for NUMH2 model

NUHM2: $tan\beta=10$, $A_{\rho}=0$, $m_{A}=500$ GeV, $\mu=500$ GeV, $m_{f}=178$ GeV

 m_o (TeV)

- ► Most of the parameter mSUGRA space is excluded! Too simple to be true?
- +1 extensions open a new perspectives for the exploring of SUGRA
- ▶ NMH model eliminates the pull between Ωh^2 and (g-2) constraints!
- NUMH1 models provides two generic regions with low relic density for almost any mSUGRA non-viable point:
 m_φ < 0 ⇒ funnel region even for low tan β, can not be realized in mSUGRA!
 m_φ ≫ 0 ⇒ FP/HB region
- NMH and NUMH1 models has a distinctive mass spectrum, visible signals in dark matter detection experiments and specific intriguing collider signatures
- The case of non-universal Higgs mass with two parameters beyond mSUGRA one has even more degree of freedom, intriguing viable regions of parameter space and even more exciting experimental signatures
- Yet more one-parameter extension is possible non-universal gaugino mass scenario – to push up higgsino(wino) component of neutralino (see talk by Howie Baer).

Understanding NUMH1 results

- ► $X_t \ni m_{H_u}^2$ (low an eta), $m_\phi > m_0 \Rightarrow$ a stronger push of $m_{H_u}^2$ to negative values
- ▶ if $m_{\phi} \ll 0$, there exist cancellations within the X_t term \Rightarrow milder running of $m_{H_u}^2$
- $\blacktriangleright ||m_{H_u}| \gg M_Z \Rightarrow \mu^2 \sim -m_{H_u}^2 \Rightarrow \textit{for } m_\phi^2 \gg 0, |\mu| \textit{ is small }$
- $\begin{array}{||c||} \blacktriangleright & m_A^2 = m_{H_u}^2 + m_{H_d}^2 + 2\mu^2 \simeq m_{H_d}^2 m_{H_u}^2 \text{ for } m_\phi \ll 0 \text{: } m_{H_u}^2, \ m_{H_d}^2 < 0 \\ \hline & \text{ and can cancel against the } 2\mu^2 \Rightarrow \text{ small } M_A \end{array}$

NUMH1a and NUMH1b mass spectrum

parameter	mSUGRA	NUHM1a	NUHM1b		
m_{ϕ}	300	-735	550		
μ	409.2	754.0	180.6		
$m_{ ilde{g}}$	732.9	736.2	732.0		
$m_{ ilde{u}_L}$	720.9	720.5	722.4		
$m_{ ilde{t}_1}$	523.4	632.4	481.0		
$m_{\tilde{b}_1}$	650.0	691.6	631.0		
$m_{\tilde{e}_I}$	364.7	366.4	364.5		
$m_{\tilde{e}_B}$	322.8	322.1	323.0		
$m_{\widetilde{W}_2}$	432.9	759.6	280.3		
$m_{\widetilde{W}_1}$	223.9	236.2	150.2		
$m_{\widetilde{Z}_A}^{\widetilde{n}_1}$	433.7	759.5	283.4		
$m_{\widetilde{Z}_{2}}^{-4}$	414.8	752.0	190.3		
$m_{\widetilde{Z}_2}^{-3}$	223.7	<i>235.8</i>	160.7		
$m_{\widetilde{Z}_1}^{-2}$	117.0	118.7	102.7		
m_A^{-1}	538.6	265.0	603.8		
m_{H^+}	548.0	278.2	613.0		
m_h	115.7	116.1	115.3		
$\Omega_{\widetilde{Z}_1}h^2$	1.2	0.12	0.11		
$B \overset{-}{F} (b ightarrow s \gamma)$	$3.2 imes10^{-4}$	$4.7 imes10^{-4}$	$2.5 imes10^{-4}$		
Δa_{μ}	12.1×10^{-10}	9.4×10^{-10}	17.4×10^{-10}		
Masses and pai	rameters in GeV	units for mSUGI	RA and two NUHM1 i	models	
$n_0=m_{1/2}=300$ GeV, $A_0=0$, $ aneta=10$ and $m_t=178$ GeV.					

Beauty and self-motivation of SUSY

- ► Boson-fermion symmetry aimed to unify all forces in nature $Q|BOSON\rangle = |FERMION\rangle$ AND $Q|FERMION\rangle = |BOSON\rangle$
- Potentially provides the link of gravity with other interactions
- crucial ingredient of superstring models allows to include fermions
- $\textbf{Solves naturalness and gauge hierarchy problem of SM, } \Lambda_{UV} \sim 10^{19} \\ M_H^2 = M_{H^0}^2 + \Delta M_H, \ \Delta M_H \text{ in SM (SUSY):} \sim \Lambda_{UV}^2 (\sim m_{soft}^2 \log \frac{\Lambda_{UV}}{m_{soft}})$
- Provides unification of gauge couplings
- Explains REWSB EW symmetry is broken radiatively via RGE of H_u and H_d
- Provides perfect dark matter candidate stable neutral particle the flat rotation curves of spiral galaxies provide the most direct evidence for large amount of the dark matter – spherical halo
- Solves baryogenesis problem has an extra source of CP violation (baryon asymmetry from SM is 10 orders lower than the observed one)

Halo profiles

the central cusp in the dark matter halo, as seen in numerical simulations, is smoothed out by a significant heating of the cold particles, leading to a cored density distribution, which has been modeled by the so called Burkert profile

$$\rho_B(r) = \frac{\rho_B^0}{(1 + r/a)\left(1 + (r/a)^2\right)}.$$
(1)

length scale parameter a = 11.7 kpc, the normalization ρ_B^0 is adjusted to reproduce the local halo density at the Earth position to $ho_B(r_0) = 0.34 \ {
m GeV \ cm^{-3}}$

► spherical profile, which has no closed analytical form, roughly follows, in the inner galactic regions, the behavior of the profile proposed by Moore et al., approximately scaling as r^{-1.5} in the innermost regions, and features a local dark matter density ρ_{N03}(r₀) = 0.38 GeV cm⁻³ (Adiabatically Contracted N03 Halo Model).