The Higgs Working Group: Summary of Snowmass '05 Activities

Sven Heinemeyer, CERN

Snowmass, 08/2005

- 1. Our charge, our interpretation of it, our approach
- 2. Some complaints
- 3. Higgs at the LHC/ILC
- 4. Precision Observables and Polarization

1. Our charge, our interpretation of it, our approach

The charge:

A) What are the most important measurements for Higgs physics?

- B) What are new and important recent developments?
- C) What will the ILC add to what will be known from the LHC ?
- D) What are the corresponding detector requirements to allow the corresponding measurements with the appropriate precision ?
- E) What are the corresponding theory requirements to allow the corresponding measurements with the appropriate precision ?

 \Rightarrow open for participation and contributions!

 \Rightarrow many interesting talks

We started a document to

- collect known and new results on Higgs, LHC \oplus ILC
- coordinate our efforts
- list open issues and possibilities for contributions
- fold in Snowmass '05 results
- \rightarrow all files are available at the web page
- \rightarrow was and is under construction, awaiting contributions

Sessions and summaries:

- Higgs in the SM, coupling measurements
 → Heather (3)
- Higgs in the MSSM (cosmological connections) \rightarrow Shinya (4)
- joint Higgs/top/QCD session \Rightarrow Higgs/EWPO and e^+ polarization \rightarrow S.H. (1)
- Higgs at the $\gamma\gamma$ collider \rightarrow Heather (3)
- non-standard/exotic models \rightarrow Tim (5)
- Higgs precision and detector issues \rightarrow Alexei (2)
- ... looks as if we have been very productive

2. Some complaints

... looks as if we have been very productive

However: not much has happened besides the talks

To fulfill our charge we needed

- active participants who have time and "the right mood"
- collaboration between experimentalists and theorists (convenors: 4 theorists, 1 experimentalist)

Experimentalists:

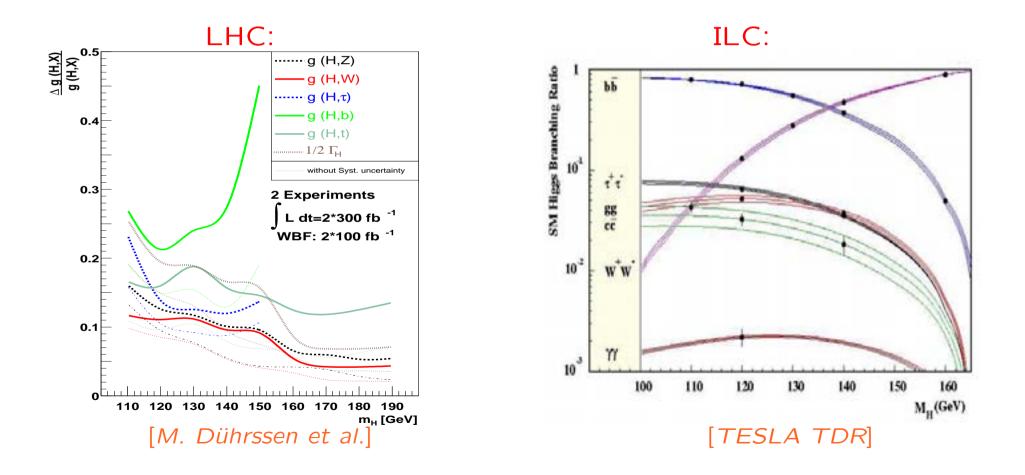
- too many things in parallel (too many competing structures)
- often couldn't even attend the physics plenary
- hardly had time to interact with theorists

Theorists:

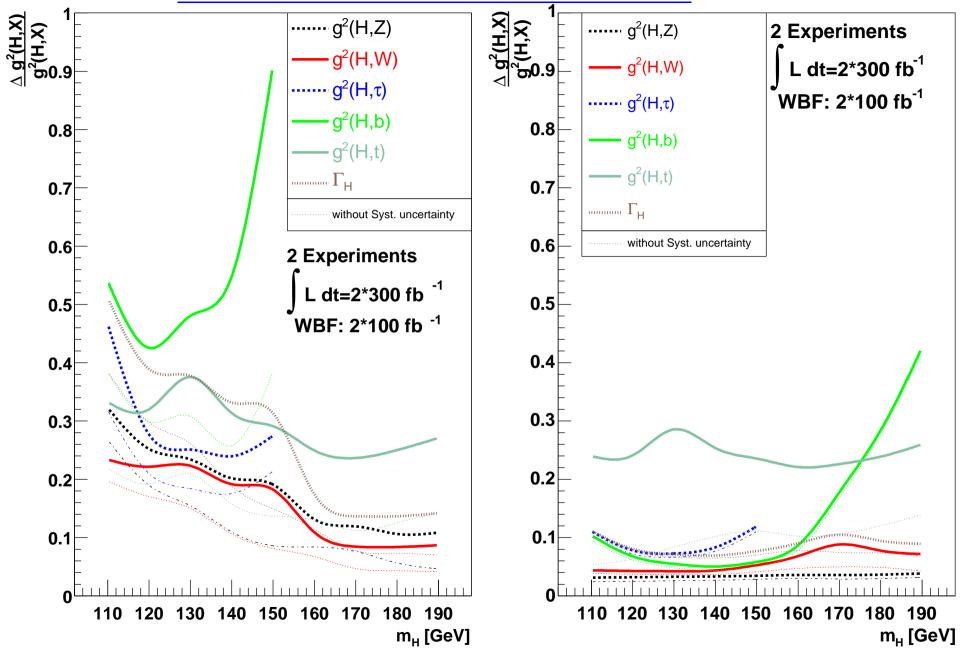
- many talks (most participants mostly interested in (their) talks)
- Aspen is still too far away
- hardly any contributions here besides talks

But physics input is important for detector/accelerator requirements

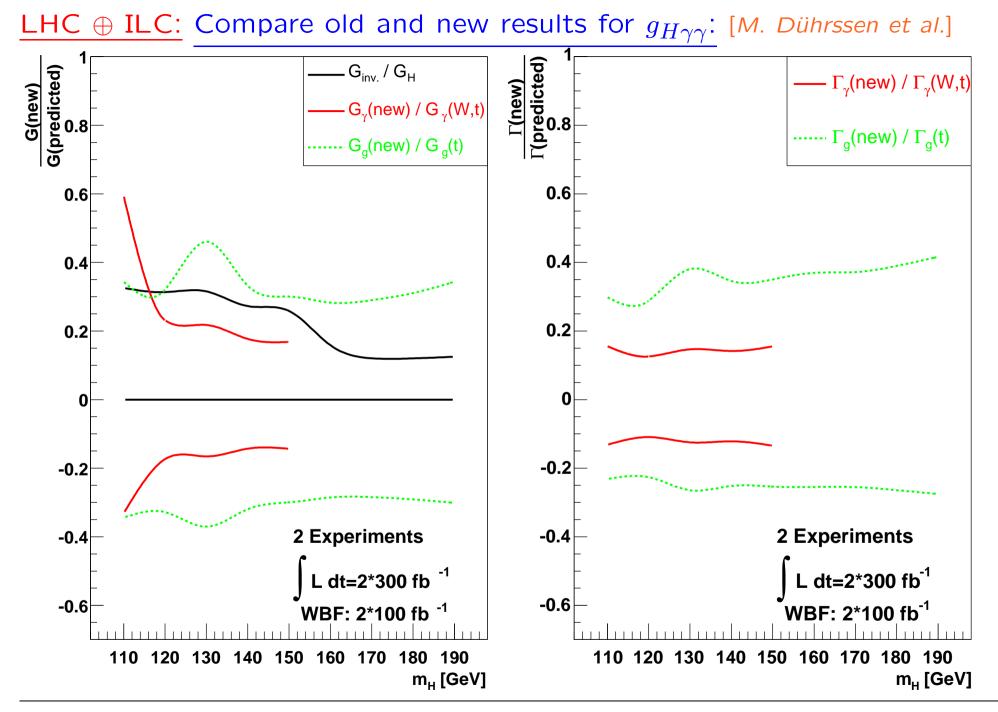
⇒ bad planning ... (time could be spent more "economically")


3. Higgs at the LHC \oplus **ILC**

 \rightarrow session of LHC/ILC group was very helpful (although originally not forseen)


 \rightarrow interesting talk by Kyle Cranmer

3. Higgs at the LHC \oplus **ILC**


 → session of LHC/ILC group was very helpful (although originally not forseen)
 → interesting talk by Kyle Cranmer

Sven Heinemeyer, 2005 ILC Physics and Detector WS, Snowmass, 25.08.2005

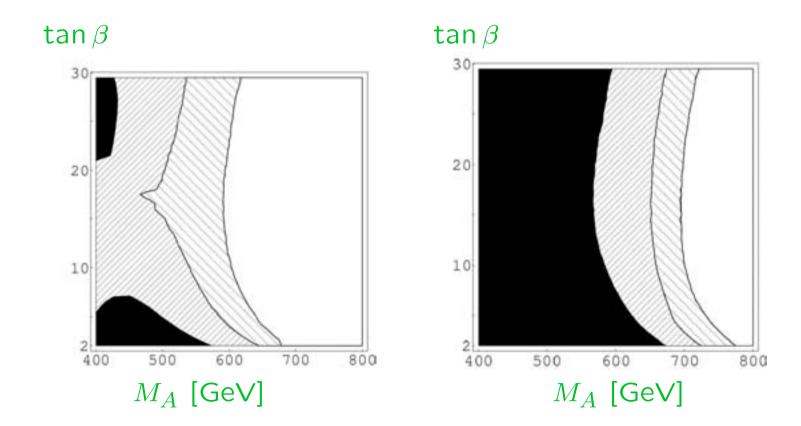
Sven Heinemeyer, 2005 ILC Physics and Detector WS, Snowmass, 25.08.2005

4. Precision Observables and Polarization

Joint Higgs/top/QCD session: \rightarrow talk by Gudi Moortgat-Pick

- \Rightarrow connection of e^+ polarization with Higgs physics and electroweak precision observables
- ⇒ not only detector and theory issues, but also accelerator issues to get the required precision!

Two examples:


- polarization to enhance small Higgs cross sections
- $-e^+$ polarization for EWPO

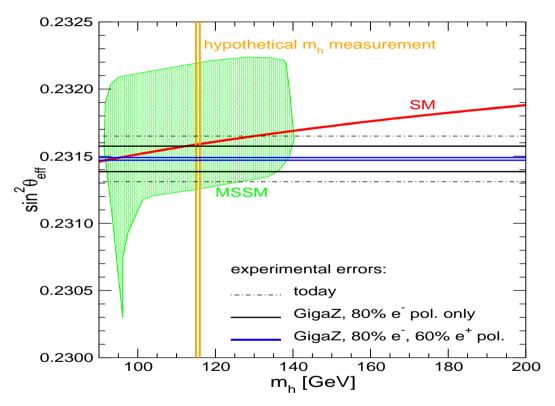
Example I: polarization to enhance small Higgs cross sections

Q: How can the reach for heavy MSSM Higgs bosons be extended beyond the kinematic reach $M_H \lesssim \sqrt{s}$?

Example I: polarization to enhance small Higgs cross sections

- **Q:** How can the reach for heavy MSSM Higgs bosons be extended beyond the kinematic reach $M_H \lesssim \sqrt{s}$?
- A: Possibly by $e^+e^- \rightarrow \nu \bar{\nu} H$ including loop corrections and polarization [*T. Hahn et al. '03*]

\Rightarrow large enhancement in ILC reach


Example II: e^+ polarization for EWPO

Q: What is the improvement in $\sin^2 \theta_{\text{eff}}$?

Example II: e^+ polarization for EWPO

Q: What is the improvement in $\sin^2 \theta_{\rm eff}$?

A: A lot! (factor of \sim 5) [S.H., G. Weiglein '04]

 \Rightarrow very sensitive test of SM/MSSM

 \Rightarrow even sensitive beyond direct reach of LHC/ILC

 $\Rightarrow e^+$ polarization is an important accelerator requirement

5. Continuation:

- Higgs precision and detector issues \rightarrow Alexei (2)
- Higgs in the SM, coupling measurements \rightarrow Heather (3)
- Higgs at the $\gamma\gamma$ collider \rightarrow Heather (3)
- Higgs in the MSSM (cosmological connections) \rightarrow Shinya (4)
- non-standard/exotic models \rightarrow Tim (5)