Tao Han Univ. of Wisconsin–Madison (ILC Workshop, Snowmass, Aug. 17, 2005)

Tao Han

Univ. of Wisconsin–Madison (ILC Workshop, Snowmass, Aug. 17, 2005)

Standard Model as An Effective Theory

Tao Han

Univ. of Wisconsin–Madison (ILC Workshop, Snowmass, Aug. 17, 2005)

Standard Model as An Effective Theory

Parameterize Physics Beyond the SM

Tao Han

Univ. of Wisconsin–Madison (ILC Workshop, Snowmass, Aug. 17, 2005)

Standard Model as An Effective Theory

Parameterize Physics Beyond the SM

Collider Sensitivities

Tao Han

Univ. of Wisconsin–Madison (ILC Workshop, Snowmass, Aug. 17, 2005)

Standard Model as An Effective Theory

Parameterize Physics Beyond the SM

Collider Sensitivities

Concluding Remarks

SM with a light Higgs ?

SM with a light Higgs ?

EW precision data: $m_H < 186$ GeV at 95% CL;* *Recent fit with new m_t .

SM with a light H could be an effective theory to $\Lambda \sim M_{pl}$.

- a stable vacuum; non-trivial interactions;
- renormalizability ...

Due to quantum corrections, the Higgs mass is quadratically sensitive to the new physics (cutoff) scale: $\sim \Lambda^2$.

Due to quantum corrections, the Higgs mass is quadratically sensitive to the new physics (cutoff) scale: $\sim \Lambda^2$.

Due to quantum corrections, the Higgs mass is quadratically sensitive to the new physics (cutoff) scale: $\sim \Lambda^2$.

 $(200 \text{ GeV})^2 = m_{H0}^2 + \left[-(2 \text{ TeV})^2 + (700 \text{ GeV})^2 + (500 \text{ GeV})^2\right] \left(\frac{\Lambda_{t,W,H}}{10 \text{ TeV}}\right)^2$

Due to quantum corrections, the Higgs mass is quadratically sensitive to the new physics (cutoff) scale: $\sim \Lambda^2$.

 $(200 \text{ GeV})^2 = m_{H0}^2 + \left[-(2 \text{ TeV})^2 + (700 \text{ GeV})^2 + (500 \text{ GeV})^2 \right] \left(\frac{\Lambda_{t,W,H}}{10 \text{ TeV}} \right)^2$ Naturalness requirement: less than 90% cancellation on m_H^2 $\Lambda_t \lesssim 3 \text{ TeV} \quad \Lambda_W \lesssim 9 \text{ TeV} \quad \Lambda_H \lesssim 12 \text{ TeV}$

Beyond the SM $\phi^{\rm 4}$ Theory

Blow a new physics scale Λ , the effective interactions at the NLO

$$\mathcal{L}_{\text{eff}}^{\text{dim-6}} = \sum_{n} \frac{f_n}{\Lambda^2} \mathcal{O}_n,$$

where f_n 's are dimensionless "anomalous couplings".

Near the scale Λ , f_n 's are expected to be of the order of unity.

Beyond the SM $\phi^{\rm 4}$ Theory

Blow a new physics scale Λ , the effective interactions at the NLO

$$\mathcal{L}_{\text{eff}}^{\text{dim-6}} = \sum_{n} \frac{f_n}{\Lambda^2} \mathcal{O}_n,$$

where f_n 's are dimensionless "anomalous couplings". Near the scale Λ , f_n 's are expected to be of the order of unity.

There are eleven SM gauge-invariant bosonic operators;* eight of them involving H.

*K. Hagiwara et al., PRD48, 2182 (1993); ...

Beyond the SM ϕ^4 Theory

Blow a new physics scale Λ , the effective interactions at the NLO

$$\mathcal{L}_{\text{eff}}^{\text{dim-6}} = \sum_{n} \frac{f_n}{\Lambda^2} \mathcal{O}_n,$$

where f_n 's are dimensionless "anomalous couplings". Near the scale Λ , f_n 's are expected to be of the order of unity.

There are eleven SM gauge-invariant bosonic operators;^{*} eight of them involving H.

<u>Class I</u>

Among those, two of them contribute to two-point functions:

$$\mathcal{O}_{BW} = \Phi^{\dagger} \widehat{B}_{\mu\nu} \widehat{W}^{\mu\nu} \Phi \Longrightarrow S,$$

$$\mathcal{O}_{\Phi,3} = (D_{\mu} \Phi)^{\dagger} \Phi^{\dagger} \Phi (D^{\mu} \Phi) \Longrightarrow T.$$

Tight constraints, at 95% CL:[†]

$$-1 < rac{f_{BW}}{(\Lambda/{
m TeV})^2} < 8, ~~ -0.07 < rac{f_{\Phi,3}}{(\Lambda/{
m TeV})^2} < 0.6.$$

will not persue them further.

*K. Hagiwara et al., PRD48, 2182 (1993); ... †M.C. Gonzalez-Garcia, hep-ph/9902321.

Class II

Four of them lead to V - H interactions:

$$\mathcal{O}_{WW} = \Phi^{\dagger} \widehat{W}_{\mu\nu} \widehat{W}^{\mu\nu} \Phi,$$

$$\mathcal{O}_{BB} = \Phi^{\dagger} \widehat{B}_{\mu\nu} \widehat{B}^{\mu\nu} \Phi,$$

$$\mathcal{O}_{W} = (D_{\mu} \Phi)^{\dagger} \widehat{W}^{\mu\nu} (D_{\nu} \Phi),$$

$$\mathcal{O}_{B} = (D_{\mu} \Phi)^{\dagger} \widehat{B}^{\mu\nu} (D_{\nu} \Phi).$$

Class II

Four of them lead to V - H interactions:

$$\mathcal{O}_{WW} = \Phi^{\dagger} \widehat{W}_{\mu\nu} \widehat{W}^{\mu\nu} \Phi,$$

$$\mathcal{O}_{BB} = \Phi^{\dagger} \widehat{B}_{\mu\nu} \widehat{B}^{\mu\nu} \Phi,$$

$$\mathcal{O}_{W} = (D_{\mu} \Phi)^{\dagger} \widehat{W}^{\mu\nu} (D_{\nu} \Phi),$$

$$\mathcal{O}_{B} = (D_{\mu} \Phi)^{\dagger} \widehat{B}^{\mu\nu} (D_{\nu} \Phi).$$

as

$$\mathcal{L}_{eff}^{H} = g_{H\gamma\gamma} H A_{\mu\nu} A^{\mu\nu} + g_{HZ\gamma}^{(1)} A_{\mu\nu} Z^{\mu} \partial^{\nu} H + g_{HZ\gamma}^{(2)} H A_{\mu\nu} Z^{\mu\nu} + g_{HZZ}^{(1)} Z_{\mu\nu} Z^{\mu} \partial^{\nu} H + g_{HZZ}^{(2)} H Z_{\mu\nu} Z^{\mu\nu} + g_{HWW}^{(1)} (W_{\mu\nu}^{+} W^{-\mu} \partial^{\nu} H + \text{h.c.}) + g_{HWW}^{(2)} H W_{\mu\nu}^{+} W^{-\mu\nu},$$

with

$$g_{H\gamma\gamma} = -\frac{s^2(f_{BB} + f_{WW})}{2}K, \ g_{HZ\gamma}^{(1)} = \frac{s(f_W - f_B)}{2c}K, \ g_{HZ\gamma}^{(2)} = \frac{s(s^2f_{BB} - c^2f_{WW})}{c}K,$$

$$g_{HZZ}^{(1)} = \frac{c^2f_W + s^2f_B}{2c^2}K, \quad g_{HZZ}^{(2)} = -\frac{s^4f_{BB} + c^4f_{WW}}{2c^2}K,$$

$$g_{HWW}^{(1)} = \frac{1}{2}f_WK, \quad g_{HWW}^{(2)} = -f_{WW}K,$$

where $s \equiv \sin \theta_W$, $c \equiv \cos \theta_W$ and $K = gm_W / \Lambda^2 \approx 0.053 \text{ TeV}^{-1} \approx 1/(19 \text{ TeV})$.

Current constraints not strong:

By precision electroweak data and one-loop calculations:

$$-4 < \frac{f_B}{(\Lambda/\text{TeV})^2} < 2, \quad -6 < \frac{f_W}{(\Lambda/\text{TeV})^2} < 5,$$

$$-17 < \frac{f_{BB}}{(\Lambda/\text{TeV})^2} < 20, \quad -5 < \frac{f_{WW}}{(\Lambda/\text{TeV})^2} < 6.$$

Current constraints not strong:

By precision electroweak data and one-loop calculations:

$$-4 < \frac{f_B}{(\Lambda/\text{TeV})^2} < 2, \quad -6 < \frac{f_W}{(\Lambda/\text{TeV})^2} < 5,$$

$$-17 < \frac{f_{BB}}{(\Lambda/\text{TeV})^2} < 20, \quad -5 < \frac{f_{WW}}{(\Lambda/\text{TeV})^2} < 6.$$

- LEP II Higgs search bound, but for $m_H < 113$ GeV;
- Triple gauge boson coupling constraints weaker will improve;
- Partial wave unitarity bounds weaker as well.

Class III

The last two are pure H terms:

$$\begin{aligned} \mathcal{O}_{\Phi,1} &= \frac{1}{2} \partial^{\mu} \left(\Phi^{\dagger} \Phi \right) \partial_{\mu} \left(\Phi^{\dagger} \Phi \right), \\ \mathcal{O}_{\Phi,2} &= \frac{1}{3} \left(\Phi^{\dagger} \Phi \right)^{3}. \end{aligned}$$

Class III

The last two are pure H terms:

$$\begin{aligned} \mathcal{O}_{\Phi,1} &= \frac{1}{2} \partial^{\mu} \left(\Phi^{\dagger} \Phi \right) \partial_{\mu} \left(\Phi^{\dagger} \Phi \right), \\ \mathcal{O}_{\Phi,2} &= \frac{1}{3} \left(\Phi^{\dagger} \Phi \right)^{3}. \end{aligned}$$

In terms of the canonically normalized Higgs field (via $a_1 = f_{\Phi,1}v^2/\Lambda^2$) and the physical Higgs mass (via a_1, a_2),[‡]

$$\begin{aligned} \mathcal{L}_{VH} &= \left(M_W^2 W_{\mu}^+ W^{-\mu} + \frac{1}{2} M_Z^2 Z_{\mu} Z^{\mu} \right) \left(\left(1 - \frac{a_1}{2} \right) \frac{2H}{v} + (1 - a_1) \frac{H^2}{v^2} \right), \\ \mathcal{L}_{H^3} &= -\frac{m_H^2}{2v} \left(\left(1 - \frac{a_1}{2} + \frac{2a_2}{3} \frac{v^2}{m_H^2} \right) H^3 - \frac{2a_1 H \partial_{\mu} H \partial^{\mu} H}{m_H^2} \right), \\ \mathcal{L}_{H^4} &= -\frac{m_H^2}{8v^2} \left(\left(1 - a_1 + \frac{4a_2 v^2}{m_H^2} \right) H^4 - \frac{4a_1 H^2 \partial_{\mu} H \partial^{\mu} H}{m_H^2} \right). \end{aligned}$$

[‡]V. Barger et al., hep-ph/0301097.

Class III

The last two are pure H terms:

$$\begin{aligned} \mathcal{O}_{\Phi,1} &= \frac{1}{2} \partial^{\mu} \left(\Phi^{\dagger} \Phi \right) \partial_{\mu} \left(\Phi^{\dagger} \Phi \right), \\ \mathcal{O}_{\Phi,2} &= \frac{1}{3} \left(\Phi^{\dagger} \Phi \right)^{3}. \end{aligned}$$

In terms of the canonically normalized Higgs field (via $a_1 = f_{\Phi,1}v^2/\Lambda^2$) and the physical Higgs mass (via a_1, a_2),[‡]

$$\begin{aligned} \mathcal{L}_{VH} &= \left(M_W^2 W_{\mu}^+ W^{-\mu} + \frac{1}{2} M_Z^2 Z_{\mu} Z^{\mu} \right) \left(\left(1 - \frac{a_1}{2} \right) \frac{2H}{v} + \left(1 - a_1 \right) \frac{H^2}{v^2} \right), \\ \mathcal{L}_{H^3} &= -\frac{m_H^2}{2v} \left(\left(1 - \frac{a_1}{2} + \frac{2a_2}{3} \frac{v^2}{m_H^2} \right) H^3 - \frac{2a_1 H \partial_{\mu} H \partial^{\mu} H}{m_H^2} \right), \\ \mathcal{L}_{H^4} &= -\frac{m_H^2}{8v^2} \left(\left(1 - a_1 + \frac{4a_2 v^2}{m_H^2} \right) H^4 - \frac{4a_1 H^2 \partial_{\mu} H \partial^{\mu} H}{m_H^2} \right). \end{aligned}$$

- Gauge-invariant formulation important !
- Not only a change in Higgs potential, but also kinetic corrections !
- VVH probe $f_{\Phi,1}$; H^3 (related to H^4) probes $f_{\Phi,2}$ ($f_{\Phi,1}$ as well).

[‡]V. Barger et al., hep-ph/0301097.

Collider Sensitivity to the anomalous Couplings In the case of Class II: g_{HVV} *H* decays modified:

where (a)=SM; (b)= $f/\Lambda^2 = 10/\text{TeV}^2$; (c)= $f/\Lambda^2 = 100/\text{TeV}^2$.

H Production Changed:

H Production Changed:

$$pp(\bar{p}) \rightarrow jjH \rightarrow jj \gamma\gamma,$$

 $\rightarrow jjH \rightarrow jj Z\gamma,$
 $\rightarrow \gamma\gamma\gamma, \gamma\gamma Z,$
 $\rightarrow \gamma\gamma + E_T.$

Tevatron with 1 fb ^{-1} [10 fb ^{-1}]				
$m_H(\text{GeV})$	$f/\Lambda^2(\text{TeV}^{-2})$			
	COMBINED			
100	(-7.6 , 19)[-3 , 5.6]			
120	(-7.4,18)[-3.3,5.9]			
140	(-9.1 , 20)[-4.0 , 8.7]			
160	(-9.9 ,22) [-5.1 , 13]			
180	(-24 , 33) [-16 , 24]			
200	(-32 , 39) [-17 , 23]			
220	(-42 , 45) [-19 , 26]			

$$\begin{array}{l} \mathsf{LHC} \ WW \to WW, \$ \\ -1.4 < \frac{f_W}{\Lambda^2} \leq 1.2, \quad -2.2 \leq \frac{f_{WW}}{\Lambda^2} < 2.2. \end{array}$$

[§]B. Zhang, Y.-P. Kuang et al., Phys.Rev.**D67**, 114024 (2003.

$$e^+e^- \rightarrow jjH \rightarrow jj \gamma\gamma,$$

$$\rightarrow jjH \rightarrow jj Z\gamma,$$

$$\rightarrow \gamma\gamma\gamma, \gamma\gamma Z,$$

$$\rightarrow W^+W^-\gamma, ZZ\gamma.$$

ILC with $\sqrt{s} = 500 \text{ GeV} 100 \text{ fb}^{-1}$

	· · · · · · · · · · · · · · · · · · ·			
$m_H({\sf GeV})$	$f/\Lambda^2({\sf TeV}^{-2})$			
	$e^+e^- ightarrow W^+W^-\gamma$ at NLC	$e^+e^- \rightarrow Z^0 Z^0 \gamma$ at NLC		
170	(-2.3 , 3.7)	(— , —)		
200	(-3.2,4.0)	(-2.6 ,3.9)		
250	(-4.3,4.8)	(-3.2,4.3)		
300	(-6.3,6.3)	(-4.7,5.2)		
350	(-12 , 9.5)	(-7.1 , 8.3)		

[¶]M.C. Gonzalez-Garcia, hep-ph/9902321.

$$e^+e^- \rightarrow jjH \rightarrow jj \gamma\gamma,$$

$$\rightarrow jjH \rightarrow jj Z\gamma,$$

$$\rightarrow \gamma\gamma\gamma, \gamma\gamma Z,$$

$$\rightarrow W^+W^-\gamma, ZZ\gamma.$$

ILC with $\sqrt{s} = 500$ GeV 100 fb^{-1¶}

$m_H({\sf GeV})$	$f/\Lambda^2({\sf TeV}^{-2})$			
	$e^+e^- \rightarrow W^+W^-\gamma$ at NLC	$e^+e^- \rightarrow Z^0 Z^0 \gamma$ at NLC		
170	(-2.3 , 3.7)	(-, -)		
200	(-3.2,4.0)	(-2.6 ,3.9)		
250	(-4.3 , 4.8)	(-3.2,4.3)		
300	(-6.3,6.3)	(-4.7 , 5.2)		
350	(-12 , 9.5)	(-7.1 , 8.3)		

 $\gamma\gamma \rightarrow ZZ$

For $\sqrt{s_{ee}} = 500 \text{ GeV} (m_H = 115 - 200 \text{ GeV})$: $-0.65 \text{ TeV}^{-2} < f/\Lambda^2 < 1.7 \text{ TeV}^{-2}$ at 2σ .

M.C. Gonzalez-Garcia, hep-ph/9902321.B.Zhang, Y.-P. Kuang, et al. in progress.

Genuine self-couplings:

$$\left(\Phi^{\dagger} \Phi \right)^{3} : \qquad \left(M_{W}^{2} W_{\mu}^{+} W^{-\mu} + \frac{1}{2} M_{Z}^{2} Z_{\mu} Z^{\mu} \right) \frac{H^{2}}{v^{2}} \left(1 - a_{1} \right) - \frac{m_{H}^{2}}{2v} \left(\left(1 - \frac{a_{1}}{2} + \frac{2a_{2}}{3} \frac{v^{2}}{m_{H}^{2}} \right) H^{3} - \frac{2a_{1} H \partial_{\mu} H \partial^{\mu} H}{m_{H}^{2}} \right)$$

Genuine self-couplings:

$$(\Phi^{\dagger}\Phi)^{3}: \qquad (M_{W}^{2}W_{\mu}^{+}W^{-\mu} + \frac{1}{2}M_{Z}^{2}Z_{\mu}Z^{\mu}) \frac{H^{2}}{v^{2}} (1-a_{1}) - \frac{m_{H}^{2}}{2v} \left((1-\frac{a_{1}}{2} + \frac{2a_{2}}{3}\frac{v^{2}}{m_{H}^{2}})H^{3} - \frac{2a_{1}H\partial_{\mu}H\partial^{\mu}H}{m_{H}^{2}} \right)$$

At the LHC: very hard to observe HH, unless $H \rightarrow WW$, ZZ.*

*U.Baur, T.Plehn, D.Rainwater, Phys.Rev.**D67**, 033003 (2003); *ibid.* **D68**, 033001 (2003).

Translate to the effective triple coupling:

$$\frac{\delta g_{HHH}}{g_{HHH}} = \frac{2v^2 \delta a_2}{3m_H^2 + 2v^2 a_2} \approx 2.8 \Delta a_2.$$

SM corresponds to $g_{HHH}|_{a_2=0}$, so at the ILC with $\sqrt{s} = 500$ GeV $m_h = 120$ GeV,**

Luminosity	500 fb $^{-1}$	1 ab^{-1}	$2 ab^{-1}$
$\delta g_{HHH}^{}/g_{HHH}^{}$	42%	30%	20%
Δa_2	0.15	0.11	0.073

**C. Castanier, P. Gay, P. Lutz and J. Orloff, hep-ex/0101028.

Concluding Remarks

- Consider only a light Higgs below $\Lambda \lesssim 4\pi v$: BSM \implies "anomalous Higgs coupling".
- Emphasize the gauge-invariant formulation in $1/\Lambda^2$ -expansion: Unify our language !

Concluding Remarks

- Consider only a light Higgs below $\Lambda \leq 4\pi v$: BSM \implies "anomalous Higgs coupling".
- Emphasize the gauge-invariant formulation in $1/\Lambda^2$ -expansion: Unify our language !
- Complementary: High rate at the LHC (heavier Higgs) versus clean signal at the ILC (lighter Higgs).
- Studies should be systematically updated/sharpened.

Concluding Remarks

- Consider only a light Higgs below $\Lambda \leq 4\pi v$: BSM \implies "anomalous Higgs coupling".
- Emphasize the gauge-invariant formulation in $1/\Lambda^2$ -expansion: Unify our language !
- Complementary: High rate at the LHC (heavier Higgs) versus clean signal at the ILC (lighter Higgs).
- Studies should be systematically updated/sharpened.
- Fermionic operators should be included in further studies.

Still more to do ...