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♠. Old Stories about Extra Dimensions
1914: G. Nordstrom considered

d = 5 :

Aµ̂(µ̂ = 0,1,2,3,5) ⇒ Aµ(µ = 0,1,2,3) + φ

with scalar φ identified as gravitational field!

1915: A. Einstein told us:

gµν → ηµν + κ hµν

metric dia(ηµν) = (1,−1,−1,−1),

hµν : the gravitational field.

1921: Th. Kaluza; 1926: O. Klein

d = 5 :

γµ̂ν̂(µ̂ = 0,1,2,3,5) ⇒ gµν(µ = 0,1,2,3) +Aµ + φ

leads to gravity+E&M in 4D.

Wouldn’t that be great !

(some quest with φ...)



What happened to the extra dimension y ?

• Too small to see ?

If our Universe (~x) is expanding as a function of t, why not some

part (y) has shrunk or compactified ?

t
yi
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• Too elusive to probe ?

Our E&M probes can’t get there ?

Only gravity lives there (possibly large).



If the extra dimension becomes compact (a circle of radius R),

then all fields (gravitational, electromagnetic etc.)

in y-dimension are periodic functions :

F(x, y) =
∞
∑

n=−∞
Fn(x) ein·y/R.

Equation of motion:

(∂µ∂µ − ∂y∂y)F(x, y) ⇒ (∂µ∂µ +
n2

R2
)Fn(x)

⇒ mn ∼ n

R
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If the extra dimension becomes compact (a circle of radius R),

then all fields (gravitational, electromagnetic etc.)

in y-dimension are periodic functions :

F(x, y) =
∞
∑

n=−∞
Fn(x) ein·y/R.

Equation of motion:

(∂µ∂µ − ∂y∂y)F(x, y) ⇒ (∂µ∂µ +
n2

R2
)Fn(x)

⇒ mn ∼ n

R
(a set of tower!)

n = 0: Zero modes as graviton and photon;

n 6= 0: Massive Kaluza-Klein (KK) excitations

Very interesting mass generation !

So, search for the massive KK states: equivalent to searching

for compact extra dimensions

∆MKK = 1/R.

No γKK, e
−
KK, ... found ⇒ R−1 large; or γ, e− ... don’t go there.
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⋆ Extra Dimensions in String Theory:

80’s: Green-Schwarz-Witten et al.

Bosonic String: 26-dim (anomaly-free)

Superstring: 10-dim

Supergravity: 11-dim

90’s: M-theory:

10-dim “unification” of string theories

String theory ⇒ extra dimensions!

99–00’s: Large extra dimensions ? ...

Arkani-Hamed, Antoniadis, Dimopoulos and Dvali: hierarchy

K. Dienes, E. Dudas, T. Gherghetta: coupling unification

Randall and Sundrum: hierarchy

Many more incarnations ...



♠ Low-Scale Extra Dimension Models (partial list)

General Consideration:

• In a factorizable flat metric:

ds2 = ηMN dxMdxN , M,N = (0,1, ...,4 + n),

with Minkowski metric ηMM = (1,−1,−1, ...).

In general, a 4 + n-dimensional gravity action:

S =
1

2
Mn+2
D

∫

d4+nx
√
−gR,

where MD: the 4 + n-dim Planck scale.
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• In a factorizable flat metric:

ds2 = ηMN dxMdxN , M,N = (0,1, ...,4 + n),

with Minkowski metric ηMM = (1,−1,−1, ...).

In general, a 4 + n-dimensional gravity action:

S =
1

2
Mn+2
D

∫

d4+nx
√
−gR,

where MD: the 4 + n-dim Planck scale.

• The most general 4d Poincare invariant solution:

ds2 = e2A(y) ηµν dx
µdxν − dyidyi,

where e2A(y): a “warp” factor: the shape of space-time in y.

The 4-dim Planck scale is:

M2
pl = Mn+2

D

∫

dny e2A(y) ≡Mn+2
D Vn.

Mpl is made of Mn+2
D , Vn.



• Theory in 4d and KK decomposition:

L(4) =

∫

dny L(4+n)(F̂MN , ψ̂, Ĥ).

With yi compactified,

F̂(x, yi) =
k

∑

Fk(x) (ak sin
ky

R
+ bk cos

ky

R
).

satisfying the boundary conditions in yi.
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• Masses for KK modes: Stringy states: Winding modes:

MKK ∼ n/R,
√
nMS, nRM2

S .

• Graviton Interactions With Matter Fields:

S =
∫

d4x
√

−ĝ L(4) ≈ −κ
2

∫

d4x(h
µν
~n + φ~nη
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where h~nµν is a graviton, φ~n a scalar dilaton (specified by ~n).



• Theory in 4d and KK decomposition:

L(4) =

∫

dny L(4+n)(F̂MN , ψ̂, Ĥ).

With yi compactified,

F̂(x, yi) =
k

∑

Fk(x) (ak sin
ky

R
+ bk cos

ky

R
).

satisfying the boundary conditions in yi.

• Masses for KK modes: Stringy states: Winding modes:

MKK ∼ n/R,
√
nMS, nRM2

S .

• Graviton Interactions With Matter Fields:

S =

∫

d4x
√

−ĝ L(4) ≈ −κ
2

∫

d4x(h
µν
~n + φ~nη

µν) Tµν,

where h~nµν is a graviton, φ~n a scalar dilaton (specified by ~n).

The energy-momentum tensor, Tµν, includes all matter:

T fermions
µν , T scalars

µν , TEW
µν , TQCD

µν ...

The rule: a graviton couples to EVERYTHING
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With n extra dimensions compactified on a torus of radius R,
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Large Extra Dimensions (ADD) :

With n extra dimensions compactified on a torus of radius R,

M2
pl ∼ RnMn+2

D

Two fundamental scales: R and MD (or MS),
∗

Conventional Superstring:

If MS <∼Mpl, then R <∼ 1/MS ∼ 10−32 cm.

Too small to be appreciable !

Low Scale Superstring: †

If MS ≪Mpl as low as O(1 TeV), (Good!) then

R ∼
M

2/n
pl

M
2/n+1
S

≈
{

O(0.1 mm) for n = 2
O(1.0 fm) for n = 7

leads to “large” extra dimensions.

• Table-top gravity experiments to reach R ∼ 0.1 mm,

• may search for light KK gravitons:

m = n/R ∼ 10−3 eV – 100 MeV.

∗ Arkani-Hamed, Antoniadis, Dimopoulos and Dvali.
†J. Lykken; Antoniadis et al.; K. Dienes et al.



Although only gravitons in the extra dimensions,

it is more than just gravitational effects:

⋆ KK Graviton Density‡

If R is large, there will be a high degeneracy:

∆~n2 = ρ(m)dm2,

ρ(m) =
πn/2

Γ(n/2)
Rnmn−2.

‡G. Giudice, R. Rattazzi and J. Wells;
T. Han, J. Lykken and R.-J. Zhang.



Although only gravitons in the extra dimensions,

it is more than just gravitational effects:

⋆ KK Graviton Density‡

If R is large, there will be a high degeneracy:

∆~n2 = ρ(m)dm2,

ρ(m) =
πn/2

Γ(n/2)
Rnmn−2.

Although each graviton couples gravitationally,

the high-degeneracy leads to

κ2ρ(m)dm2 ∼ κ2Rnmn−2dm2 ∼ En/Mn+2
S

Effective coupling κ2 ∼ 1
M2
pl

→ 1
M2
S

!

⇒ leads to possibly observable effeccts.

‡G. Giudice, R. Rattazzi and J. Wells;
T. Han, J. Lykken and R.-J. Zhang.



⋆ Bounds on the ADD model:

Table-Top Gravity Experiments:

A torsion pendulum/attractor experiment∗

and a forced oscillator experiment†

New force with r > 0.2 mm excluded.

∗E. Adelberger et al., Phys.Rev.Lett.86, 1418 (2001).
†Chan, Long, Price et al., hep-ph/0009062, Nature 421, 922,2003.
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⋆ Bounds on the ADD model:

Table-Top Gravity Experiments:

A torsion pendulum/attractor experiment∗

and a forced oscillator experiment†
New force with r > 0.2 mm excluded.

Supernova bounds:

SN1987A energy-loss rate (mainly to ν′s), which leads to bounds§

n = 2 : MS > 30 − 130 TeV (!)

n = 3 : MS > 2 − 9 TeV.

Neutron star heating:

Trapped KK gravitons in the SN core may overheat the NS.†

n = 2 : MS > 100 TeV

n = 3 : MS > 10 TeV (!)

These results have very little model-dependence.

n < 3 is strongly disfavored, if MS ∼ O(1 TeV).

∗E. Adelberger et al., Phys.Rev.Lett.86, 1418 (2001).
†Chan, Long, Price et al., hep-ph/0009062, Nature 421, 922,2003.

§S. Cullen and M. Perelstein; Barger, Han, Kao and Zhang.
†S. Hannestad and G. Raffelt, hep-ph/0110067.
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Universal Extra Dimensions (UED) :

All particles propagate in extra dimensions “universally”.¶

⋆ “Orbifolding” S1/Z2 compactification:

A

B B

A
0

πR−πR πR

0

=>

• SM particles are the zero-modes;
• All particles have KK tower;
• KK-parity conserved.

⋆Current bounds (both precision EW and Tevatron search)

MKK >∼ 400 GeV or R <∼
1

0.5 TeV
∼ 10−15 mm.

¶T. Appelquist, H.-C. Cheng, B.A. Dobrescu (2001).



The Randall-Sundrum Scenario:

In a 5-dim space, Randall and Sundrum found a static solution:∗

ds2 = e2A(y) ηµν dx
µdxν − dy2,

where the “warp” factor A(y) = −ky,
with k the curvature scale in the 5th-dim.

∗L. Randall, R. Sundrum, hep-th/9905221.



The Randall-Sundrum Scenario:

In a 5-dim space, Randall and Sundrum found a static solution:∗

ds2 = e2A(y) ηµν dx
µdxν − dy2,

where the “warp” factor A(y) = −ky,
with k the curvature scale in the 5th-dim.

The extra dimension y is “warped”.

SM

planck brane

gravity

Randall-Sundrum

Mpl
y0

m � e��y0Mpl
∗L. Randall, R. Sundrum, hep-th/9905221.



⋆ Mass hierarchy Mpl/MEW generated on the two branes:

v = e−ky0Mpl.

To get v ≈ 246 GeV, need ky0 ≈ 40.

The “size” of extra-dim: y0 ∼ (10 − 100) lpl.



⋆ Mass hierarchy Mpl/MEW generated on the two branes:

v = e−ky0Mpl.

To get v ≈ 246 GeV, need ky0 ≈ 40.

The “size” of extra-dim: y0 ∼ (10 − 100) lpl.

⋆ KK decomposition:‡

Bulk fields:

F̂q(x, yi) ∼
k

∑

Fk(x)(akJq + bkYq),

where Jq, Yq are Bessel functions of order q=1,2, half-integers

for a gauge boson, graviton, fermion, respectively.

KK states h
µν
KK, A

µ
KK, fKK... with masses MKK ∼ e−ky0Mpl,

and with 1/TeV couplings.

Tension with EW data were studied and more involved configu-

ration needed.‖

‡Davoudiasl, Hewett, Rizzo, hep-ph/9909255.

‖Gherhetta and Pomarol, hep-ph/0003129; Hewett, Petriello, Rizzo,
hep-ph/0203091.



Variations of The RS Model:

⋆ Bulk Fields with Custodial Symmetry∗∗

All fields in the bulk, with an enhanced gauge symmetry

SUR(2) × SUL(2) × U(1).

Electroweak symmetry broken by the Higgs field

on the TeV brane.

Corrections to T (or ρ) small if MKK ∼ a few TeV.

∗∗Agashe, Delgado, May, and Sundrum, hep-ph/0308036



Variations of The RS Model:

⋆ Bulk Fields with Custodial Symmetry∗∗

All fields in the bulk, with an enhanced gauge symmetry

SUR(2) × SUL(2) × U(1).

Electroweak symmetry broken by the Higgs field

on the TeV brane.

Corrections to T (or ρ) small if MKK ∼ a few TeV.

⋆ Higgsless Model∗

No Higgs fields at all;

Electroweak symmetry broken by the TeV brane

boundary condition.

Tension between WLWL scattering unitarity and

the precision EW data severe ‡

∗∗Agashe, Delgado, May, and Sundrum, hep-ph/0308036
∗C.Csaki et al. hep-ph/0305237, hep-ph/0308038; Y.Nomura, hep-ph/0309189.
‡Hewett, Lillie, Rizzo, hep-ph/0407059.



⋆ Orbifolding SUSY GUTS∗

SUSY and GUTs breaking by orbifolding boundary conditions;

Electroweak scale generated by warping;

Distinctive feature: TeV scale GUT gauginos XY ;

However, the symmetry forbidding prompt proton decay

makes XY hard to observe:

stable charged hadrons X, Y, (Xq...) ?

∗Y.Nomura et al. hep-ph/0209158; hep-ph/0212134; 0305214.
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Outcomes of Extra Dimensions Models:

an exciting frontier for explorers

• Newton’s law: modified at both short and long distances.∗

• EWSB: gauge-boson masses and the Higgs†, or “Higgsless”.‡

• fermion masses: Yukawa couplings by displacement/overlapping††

• ν masses/mixings: bulk neutrinos¶

• GUTs: gauge coupling power-law running∗ or log-running‡‡

• SUSY GUTs: breaking by orbifolding‡

• new cosmology;§ cosmological const.‖

∗ADD; RS; Dvali et al.
†Cheng et al.; Luty et al.; Hall et al.; Ignatius et al.; Z. Chacko and A. Nelson
‡C. Csaki et al.
††Mirabelli and Schmaltz; Arkani-Hamed et al.
¶Mohapatra, Nandi, Perez-Lorenzana; Dienes et al.; Dimopoulos et al.
∗Dienes, Dudas, Gherghetta; Dumitru and Nandi.
‡‡Agashe, Delgado and Sundrum, hep-ph/0212028.
‡Hall and Nomura; Hebecker and March-Russell et al.
§Binetruy et al.; Kaloper et al.; Csaki et al.; Flanagan et al.; Cline et al.;
Kanti et al.; Mohapatra et al.

‖Arkani-Hamed et al.; Silverstein et al.; Luty et al.



♠. Phenomenological Implications
⊲ At “low” energies

• “very low”: E ≪ 1/R, MS:

4−dim effective theory: Standard Model + weak classical gravity.

(as our present experimental knowledge.)



♠. Phenomenological Implications
⊲ At “low” energies

• “very low”: E ≪ 1/R, MS:

4−dim effective theory: Standard Model + weak classical gravity.

(as our present experimental knowledge.)

• march into the extra-dimensions: 1/R < E ≪MS,

(4 + n)−dim world directly probed, and gravity effects

observable:∗ mainly via light KK gravitons of mass

mKK ∼ 1/R,

or whatever propagate there ⇒ an effective theory (SM+KK).

∗N. Arkani-Hamed, S. Dimopoulos, G. Dvali (1998);
G. Giudice, R. Rattazzi, J. Wells (1999);
T. Han, J. Lykken, R.J. Zhang. (1999);
Mirabelli, M. Peskin, M. Perelstein (1999);
J. Hewett (1999); T. Rizzo (1999); ...



⊲ At intermediate energies E ∼MD, MS:
Stringy states significant∗ and resonances
at the s-channel poles dominant:†

M(s, t) ∼ t

s−M2
n

, Mn =
√
nMS.

∗G. Shui and H. Tye (1998); K. Benakli (1999).
†Accomando, Antoniadis, Benakli (2000); Cullen, Perelstein, Peskin (2000).



⊲ At intermediate energies E ∼MD, MS:
Stringy states significant∗ and resonances
at the s-channel poles dominant:†

M(s, t) ∼ t

s−M2
n

, Mn =
√
nMS.

⊲ At “trans Planckian” energies E > MD,MS:

(4 + n)−dim physics directly probed;

gravity dominant: black hole production∗

Mbh =
√
s > MD for b < rbh.

copiously produced at LHC or other TeV-scale experiments!

∗G. Shui and H. Tye (1998); K. Benakli (1999).
†Accomando, Antoniadis, Benakli (2000); Cullen, Perelstein, Peskin (2000).
∗T. Banks and W. Fischler (1999); E. Emparan et al. (2000);
S. Giddings and S. Thomas (2002);
S. Dimopoulos and G. Landsberg (2001).



⋆ Collider Searches for Extra Dimensions:

A. Collider Signals I (ADD)

Real KK Emission: Missing Energy Signature∗

a. e+e− → γ +KK (γ+missing energy)

k2

k1
q1

q2

n − dim : at LEP2 at LC(500)
n = 4 MS > 730 (GeV) 4500
n = 6 MS > 520 (GeV) 3100

∗Giudice, Rattazzi and Wells;
Mirabelli, Perelstein and Peskin;
Cheung and Keung ... ...
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A. Collider Signals I (ADD)

Real KK Emission: Missing Energy Signature∗

a. e+e− → γ +KK (γ+missing energy)

k2

k1
q1

q2

n − dim : at LEP2 at LC(500)
n = 4 MS > 730 (GeV) 4500
n = 6 MS > 520 (GeV) 3100

b. pp̄ → jet+KK (mono-jet+missing energy)

n − dim : at Tevatron at LHC
n = 4 MS > 900 (GeV) 3400
n = 6 MS > 810 (GeV) 3300

∗Giudice, Rattazzi and Wells;
Mirabelli, Perelstein and Peskin;
Cheung and Keung ... ...



c. pp̄ → ℓ+ℓ− +KK: Qualitative features? †

Larger/harder missing energies for the KK signal:

†Han, Rainwater and Zeppenfeld, hep-ph/9905423, Phys.Lett.B463, 93(1999).



Consequently, the lepton opening angle is sensitive to it:



B. Collider Signals II (ADD)

Virtual KK Graviton Effects‡

On four-particle contact interactions:

f
−
1

f1

KK graviton f
−
2

f2

f
−
1

f1

KK grav. V2

V1

Sum over virtual KK exchanges:

iM ∼ fOif fOjf
∫ ∞

0

dm2
~n κ

2ρ(m~n)

s−m2
~n + iǫ

∼ s2

M4
S

fOif fOjf.

Again, effective coupling κ2 ∼ 1
M2
pl

→ 1
M2
S

!

‡ Hewett; Han, Lykken and Zhang; Rizzo; Cheung;
Agashe and Deshpande; Nussinov and Shrock;
Shiu, Shrock and Tye; Atwood, Bar-Shalom and Soni;
Mathews, Raychaudhuri and Sridhar; ... ...



Qualitative differences for signal/background distributions,

due to the spin-2 exchange:∗

LR asymmetry for e+e− → b̄b at
√
s = 500 GeV.

Solid: SM; “data” points for λ = ±1 with 75 fb−1.

∗J.Hewett.



C. KK Resonant States at Colliders: (RS)

a. SM KK Particles:

If the SM fields (photons, electrons, Z,W,H0...) also propagate

in extra dimensions, then they have KK excitations.‡

‡Davoudiasl, Hewett, Rizzo, hep-ph/9911262.



C. KK Resonant States at Colliders: (RS)

a. SM KK Particles:

If the SM fields (photons, electrons, Z,W,H0...) also propagate

in extra dimensions, then they have KK excitations.‡

Resonant production at the LHC:

‡Davoudiasl, Hewett, Rizzo, hep-ph/9911262.



b. Heavy KK gravitons

DY ℓ+ℓ− angular distributions:
gg → G→ e+e− 1 − cos4 θ∗

qq̄ → G→ e+e− 1 − 3 cos2 θ∗ + 4cos4 θ∗

qq̄, gg → V → e+e− 1 + α cos2 θ∗

qq̄, gg → S → e+e− 1

At the LHC (ATLAS simulation∗),
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D. Stringy resonances at Colliders

Future colliders may reach the TeV string threshold

thus directly produce the “stringy” resonant states.†

Amplitude factor near the resonance

M(s, t) ∼ t

s− nM2
S

, its mass Mn =
√
nMS.

† Antoniadis, Benakli and Quiros;
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At the ILC:∗
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Comparison of deviations from the Standard Model prediction for Bhabha

scattering at 1 TeV due to corrections from higher-dimension operators. The

four curves represent: solid, string model with MS = 3.1 TeV; dotted, KK

exchange with MH = 6.2 TeV; dashed, VV contact interactions with Λ = 88

TeV; dot-dash, AA contact interactions with Λ = 62 TeV.

∗Cullen, Perelstein and Peskin hep-ph/0001166.



E. UED:∗

Discovery reach for MUEDs at the Tevatron (blue) and the LHC (red) in the

4ℓE/T channel. We require a 5σ excess or the observation of 5 signal events,

and show the required total integrated luminosity per experiment (in fb−1) as

a function of R−1, for ΛR = 20. (In either case we do not combine the two

experiments).

∗Cheng, Matchev, and Schmaltz, hep-ph/0205314.



F. Higgsless:∗

pp→ jj V ±
1 → jjWZ.

Left: Production cross-sections of V ± at the LHC. Here tbV ± production

assumes SM-like couplings to third generation quarks. Right: The number

of events per 100 GeV bin in the 2j + 3ℓ + ν channel at the LHC with an

integrated luminosity of 300 fb−1 and cuts as indicated in the figure. Results

are shown for the SM (dotted), the Higgsless model with M±
1 = 700 GeV

(blue), and two ”unitarization” models: Padé (red) and K-matrix (green).

∗Birkedal, Matchev, and Perelstein, hep-ph/0508185.



Left: V1 production cross-sections and the continuum SM background at

an e+e− lepton collider of center of mass energy 500 GeV (solid) or 1 TeV

(dashed). Right: WZ invariant mass distribution for Higgsless signals (solid)

and SM background (dotted), at ECM = 500 GeV (red, M± = 350,400 GeV)

and ECM = 1 TeV (blue, M± = 700,800 GeV).
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Go Search for the Extra Dimensions !


