2005 ALCPG & ILC Workshops - Snowmass, U.S.A. SLAC-PUB-11718

Java Vertexing Tools

Jan Strube

University of Oregon, Eugene, OR 97403, USA

Norman Graf

Stanford Linear Accelerator Center, Menlo Park, CA 94025, USA

This document describes the implementation of the topological vertex finding algorithm ZVTOP within the org.lcsim
reconstruction and analysis framework.

1. INTRODUCTION

Information about vertices in an essential component of any physics analysis at a linear collider. The SLD experi-
ment spurred the development of an algorithm for topological vertex finding, named "ZVTOP”. This algorithm was
successfully used in many analyses. Because of its success, it is desirable to have an implementation of this algorithm
in toolkits designed for studies at the ILC. However, the original algorithm was coded in a Fortran dialect, which
is not suited for modern toolkits. The North American Study Group developed a toolkit in the Java programming
language, which enables a modern and collaborative design and allows for easier deployment across platforms.

2. AN IMPLEMENTATION IN JAVA

The first implementation of the ZVTOP algorithm in the Java programming language was done in the hep.led
reconstruction framework. The implementation was based on the original source code that was used in the SLD
experiment.

In the spirit of the design of the new framework it was decided to start the implementation afresh, based on
a publication[l] rather than source code. The fact that the author of the first implementation[2], was no longer
available for the task gave further justification for this decision.

2.1. DESIGN CONSIDERATIONS

One of the main design goals for the new implementation was close integration into the org.lcsim framework,
taking advantage of existing classes and interfaces for tracks, vectors, fitters and swimmers rather than providing
implementations of its own. This significantly reduces the maintenance cost of the package and allows focussing on
the algorithm.

Another important aspect of the design is its abstraction, meaning that the core of the package should depend
on interfaces rather than implementations. This allows for an easy change of, for example, the vertex fitter to be
used by the package. One of the main reasons why a port of the old Java code to the new framework was deemed
unfeasible is a deep-rooted dependency on concrete implementations like the class of particles.

We are confident that this is the right approach to ensure longevity of the package. Minimizing the number of
external as well as internal dependencies and taking advantage of more recent language features reduces the learning
curve which encourages more people to help maintain the package, thereby providing higher stability and reliability
of the code.

ALCPG1405 1

2.2. INTEGRATION INTO ORG.LCSIM

In the process of integrating the package into

\RIi - the org.lcsim framework, we were able to take
A \ I / / advantage of the excellent application program-
\L\ V ﬂ ming interface (APT) of the WIRED4[3] event
f display. Thanks to the well thought-out design,

\ } //// \\K it was very easy to get ZvTop to show its ver-

great tool for presentation purposes, this feature

Figure 1: Demonstration of the integration into WIRED 4. The el- will aid in debugging, tuning and improving the
lipsoids in the center (aqua) denote the location of vertices found by code, allowing for a quick visual check of the per-
ZVTOP. The cylinder in the center is the inner layer of the vertex formance. Furthermore it will give the user quick
detector. The event is ete™ — it feedback on the performance of the algorithm.

tices in the event display. As well as being a

3. CURRENT STATUS

At the time of this writing, the ZVTOP implementation in org.lcsim is not yet ready for use in production. It was
decided that a more advanced vertex fitter be used than was provided by the original source code. This has not yet
been implemented. Furthermore parts of the algorithm that were supplied in the original implementation but are
not included in the write-up, such as the ” Ghost Track” algorithm, are missing.

After achieving feature-completeness, validating the package is essential to (im)prove its reliability and give users
confidence in its performance. It is planned to directly compare the Java implementation with the one used at the
SLD experiment by feeding the same events to both packages.

4. SUMMARY

At the present date, Java vertexing tools allow users to perform topological vertexing on tracks that have been
obtained from a Fast MC simulation. An implementation that will be able to handle fully reconstructed events is
being designed from the ground up for longevity and maintainability.

Acknowledgments

The authors wish to acknowledge the hard work by the members of the org.lcsim development team. Furthermore
we wish to thank David Jackson for taking the time to explain the ZVTOP algorithm.

References

[1] Jackson, David J. Nucl. Instrum. Meth. A388 (247-253)

[2] http://www-lc.fnal.gov/proceedings/p4_eweak/walkowiak_ewsb.ps
[3] http://wired.freehep.org/

[4] http://lcsim.org

ALCPG1405 2

