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Unstable particle production near threshold with effective theory methods
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We illustrate the use of effective theory methods to describe resonant unstable particles. We outline the necessary

ingredients to describe W -pair production close to threshold in e−e+ collisions.

1. INTRODUCTION

Physical processes at ongoing and upcoming colliders involve the production and subsequent decay of heavy,
unstable particles (Z0, W+/−, t, . . . ). Their resonant production allows a precise determination of particle properties.
However, weak-coupling perturbation theory (PT) is known to fail in the resonant region [1]. The break-down of
ordinary PT is due to the appearance of a second small parameter, besides the coupling constant: the width Γ of
the unstable particle in unit of its mass M . A self-energy resummation allows one to take into account finite width
effects, however this procedure introduces some arbitrariness often reflected in gauge-dependent results. Additionally,
there is no clear prescription on how to improuve systematically the accuracy of the results.

We start from the observation that the presence of two small parameters is the characteristic feature of the problem,
so that in a theory which formulates correctly the double expansion in the coupling and in Γ/M all other issues (gauge
invariance, resummation) should follow automatically. As is typical in multi-scale problems, we use effective theory
methods to formulated this expansion. This provides us with a computational scheme for performing calculations of
resonant production of unstable particles at any accuracy.

2. W -PAIR PRODUCTION CLOSE TO THRESHOLD

In [2] we presented how an effective theory approach allows one to describe processes with resonant unstable
particles in intermediate stages. We applied the method to the description of the resonant production of a scalar,
heavy particle. This simple toy-model allowed us to study the problem of treating consistently finite width effects
while keeping all technical difficulties to a minimum.

Here we consider W -pair production close to threshold at an e+e− collider. Elements of the calculation were first
presented in [3]. We consider specifically the process

e−(p1) e+(p2) → W+(k1)W−(k2) → µ−(l1) ν̄µ(l2)u(l3) d̄(l4) . (1)

At threshold k1/2 ∼ {MW (1+v2),±MW�v} and the counting is αew ∼ α2
s ∼ v2 . This process is crucial for the precise

determination of the W mass and a lot of work has been carried out in the last years to improuve the accuracy of
the description of W+W− mediated four-fermion final states. Recently the full O (αew) to e+e− to four-fermion has
been completed [4]. Here we focus on obtaining results that are valid near threshold, where ordinary PT and the
double pole approximation break down.

The first step in the construction of the effective theory is to integrate out hard fluctuations k ∼ M (so called
factorizable corrections), for which there is no quantum-interference with resonant, slowly propagating particles.
This gives rise to the hard matching coefficients of an effective theory where only soft, collinear or resonant modes
are dynamical. The hard matching coefficients are determined by matching onshell Green functions in full theory to
operators in the effective theory. Notice that the precise definition of what are the “hard” modes depends on the
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process and on the observable under consideration. The splitting between hard and dynamical does not involve a
cut-off, instead in dimensional regularization this splitting can be achieved with the strategy of regions [5].

Once the matching coefficients and the effective operators have been calculated at the required order in PT,
calculations can be done suitably in the effective theory framework. Here we will outline how to organize the lowest
order calculation and the classes of terms contributing to the first order correction to it. The aim is to make
transparent how the calculation can be systematically extended to higher orders.

2.1. Leading order

The leading order (LO) contribution is obtained by tree-level matching of the on-shell operators and by resuming
onshell one-loop self-energies in the propagators. Specifically, at LO one needs

• tree level matching for the production vertex e+e− → W+W−

L(0)
P =

2παew

M2
W

(
ēLγ[i iD j]eL

)(
Ω∗i

−Ω∗j
+

)
,

where Ω± denote the non-relativistic vector fields with mass dimension 3/2 for the W± bosons. Notice that
at LO only the e−Le+

R amplitude contributes;

• resummation of O (αew) onshell self-energies in the propagators

L(0)
NR =

∑
±

Ω∗i
±

(
iD0 +

�D2

2MW
− ∆1

2

)
Ωi

∓ ,

here ∆ ≡ (s−M2
W )/MW is the hard matching coefficient and ∆1 denotes the leading contribution O (MW αew).

The W bosons are then described by a non-relativistic Lagrangian similar to NRQCD;

• tree level matching for the decay vertices W → ll̄

L(0)
D = −gew√

2
Ωi

−µ̄LγiνL − gew√
2

Ωi
+ūLγidL .

To obtain the LO amplitude, one derives the Feynman rules corresponding to these effective operators and combines
the various elements. The diagram contributing at LO in the effective theory is shown in Fig. 1.
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Figure 1: Leading order Feynman diagram in the effective theory.

2.2. O (αs, v, αew/v) corrections

The first correction to the LO amplitude is obtained by including all corrections O (αs ∼ v ∼ αew/v) to it. Since
αs ∼ α

1/2
ew we call this perturbative order N1/2LO. The set of terms needed at this order is

• v corrections to production vertex

L(1/2)
p =

c1

M3
W

(
ēLγjeL

) (
Ω∗i

− (−i)DjΩ∗i
+

)
+

c2

M3
W

(
ēLγ[ieL

)(
Ω∗i

−(−i)Dj]Ω∗j
+

)
+

c3

M3
W

(
ēLγ[inj]nleL

)(
Ω∗i

− (−i)DlΩ∗j
+

)
+

c4

M3
W

(
ēLγjγlγieL

) (
Ω∗i

−(−i)DlΩ∗j
+

)
, (2)
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with the matching coefficients

c1 = παew
M2

Z sin2 θw − 2M2
W

4M2
W − M2

Z

; c2 = παew
M2

Z(1 − 2 sin2 θw)
4M2

W − M2
Z

; c3 = 2παew ; c4 = παew . (3)

Additionally, at N1/2LO there is a contribution from the e−Re+
L amplitude;

• two-loop αsαew corrections to the onshell propagator. These give rise to the matching coefficient ∆3/2, which
can either be resummed, i. e. included in the effective operator, or included as perturbative interactions;

• αs corrections to the decay stage, which cancel if one is inclusive on hadronic decay products. There are no
O (v) corrections in the decay stage, the first non-trivial kinematical correction being O (v2

)
;

• the exchange of one potential photon (q0 ∼ MW v2, �q ∼ MW v), which is O (αew/v)

A(1/2,c) = −i (4πα)A(0) ×
∫

dDq

(2π)D

1
�q 2

1(
E1 − q0 − (�k1−�q)2

2MW
− ∆(1)

2 + iε
) 1(

E2 + q0 − (�k2+�q)2

2MW
− ∆(1)

2 + iε
) , (4)

where �k ≡ �k1 = �l1 +�l2 and �k2 = �l3 +�l4 = −�k. One obtains

A(1/2,c) = A(0) α MW

|�k| × arctan
|�k|√

MW (∆(1) − E1 − E2) − iε
, (5)

in agreement with [6]. The exchange of one potential photon turns out to be the only contribution at N1/2LO

which is not due to hard contributions. 1

Combining these terms one obtains the N1/2LO amplitude in the effective theory. Similarly the calculation can be
organized at higher orders. Higher order corrections come from

• matching of lower order effective operators at higher accuracy in the expansion in the couplings;

• kinematical corrections to the effective operators;

• matching of higher order effective operators;

• contribution from dynamical effective modes.

The power counting allows one to identify the terms needed at a given order prior to performing the calculation and
therefore makes a systematic organization of the calculation straightforward. The only bottleneck in going to higher
orders remains the (standard) complexity of multi-loop and multi-scale integrals, the same difficulties one encounters
in the treatment of stable particles.

3. CONCLUSIONS

We considered the resonant W -pair production with effective theory methods. We outlined the calculation of the
O(αs, v, αew/v) corrections. Work in progress is the calculation of higher order corrections, though technically more
difficult, no new conceptual issue arise.

Acknowledgments

I thank M. Beneke, A. Chapovsky, N. Kauer and A. Signer for collaboration in this project.

1Notice that in the similar tt̄ threshold production case, a resummation of potential photons is necessary.
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