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These lecture notes complement the transparencies of the corresponding talk, available on the SLAC website at

<http://www-conf.slac.stanford.edu/ssi/2005/lec_notes/Esposito-Farese/>. After recalling the various reasons

why it is important to consider alternatives to general relativity (GR), we compare the probing power of the different

classes of experimental tests. Einstein’s theory is based on two independent assumptions, one of them being that matter

is minimally coupled to a unique metric tensor gµν , which implies the equivalence principle. Extra-dimensional theories

generically predict deviations from this principle, and this is notably the case for superstring theory. We underline that

free-fall experiments are the most constraining tests within such a string-inspired framework. The second assumption

of GR, namely that gravity propagates as a spin-2 field, may be tested with different viewpoints. We first summarize

the phenomenological “parametrized post-Newtonian” (PPN) formalism, then mention some tests of finite-range

gravitational interactions, and finally describe a field-theoretical approach in which “scalar-tensor” theories of gravity

play a privileged role. Our central conclusion is that there exists a qualitative difference between three classes of

experimental tests: solar-system ones, binary-pulsar ones, and cosmological observations. In other words, they do not

probe the same features of the theories. We finally discuss briefly the future detection of gravitational waves with

laser interferometers, mention some puzzling observational issues, and comment on proposed theoretical modifications

of gravity at large distances.

1. INTRODUCTION

As advertised in many publications, general relativity (GR) passes all present experimental tests with flying colors.
There are however several reasons why it remains very important to consider alternative theories of gravity. The
first one is that theoretical attempts at quantizing gravity or unifying it with other interactions generically predict
deviations from Einstein’s theory, because gravitation is no longer mediated by a pure spin-2 field but also by
partners to the graviton (see Sec. 2.3 below). The second reason is that it is anyway extremely instructive to contrast
GR’s predictions with those of alternative models, even if there were no serious theoretical motivation for them.
Indeed, such a comparison allows us to understand better which features of the theory are actually tested in a given
experiment, and thereby to extract more definite information from experimental data. Moreover, this comparison
can also suggest new tests able to discriminate between the various allowed models (see notably Secs. 3.1 and 3.3).
The third reason is the existence of several puzzling experimental issues, which do not contradict GR in a direct
way, but may nevertheless suggest that gravity does not behave at large distances exactly as Newton and Einstein
predicted. Cosmological observations notably tell us that about 96% of the total energy density of the universe is
composed of unknown, non-baryonic, fluids (72% of “dark energy” and 24% of “dark matter”), and the acceleration
of the two Pioneer spacecrafts towards the Sun happens to be larger than what is expected from the 1/r2 law (see
Sec. 4).

The present lecture notes will not attempt at cataloguing all alternative theories of gravity which have been pro-
posed in the literature, not only because there are too many of them, but also because most of them are either
mathematically ill-defined or physically unstable. In such a case, it is a priori not even worth testing them exper-
imentally, since the behavior of their field equations suffices to rule them out. However, some of them may still
be interesting from a phenomenological viewpoint, as contrasting alternatives to GR. We refer to Refs. [1–3], in
which many classes of models have been carefully analyzed. We will focus below on the most natural and consistent
alternatives to Einstein’s theory.

General relativity is based on two independent assumptions, that textbooks sometimes present simultaneously, but
which imply different kinds of physical phenomena. The simplest way to describe them is to write the action of the
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theory (instead of the field equations it implies):

S =
c2

16πG

∫
d4x

√−g R + Sstandard
model

[all matter
fields , gµν ] . (1)

The second term on the right-hand side (RHS) is a functional of all matter fields (including gauge bosons), assumed
to be minimally coupled to one second-rank symmetric tensor, called gµν . It defines how matter behaves in a
given curved geometry, and notably how stars, planets or light rays propagate. We will analyze the observational
consequences of this assumption in Sec. 2 below. On the other hand, the first term on the RHS of Eq. (1) is the
famous Einstein-Hilbert action, which defines the dynamics of gravity itself, namely that of a spin-2 field. It tells us
not only how gravitational waves propagate, but also the behavior of the gravitational field outside a material body
generating it. Section 3 will be devoted to the tests of the dynamics of gravity.

2. MATTER-GRAVITY COUPLING

2.1. Metric Coupling

The assumption that all matter fields are universally coupled to one tensor gµν , in action (1), is called “met-
ric coupling”. Einstein and Grossmann understood this was the appropriate mathematical way to implement the
“equivalence principle” between acceleration and gravitation: An observer in a small closed and opaque room cannot
determine from a local experiment if the room is accelerated by a rocket or static at the surface of a gravitating
body. Another way to express this principle is to say that gravity is erased within a freely falling elevator (up to
tidal forces, proportional to the ratio of the elevator’s size and its distance to the center of gravitational attraction).
The first conceptual cornerstone of GR can thus be summarized easily: Let us write the usual special relativistic
laws of (non-gravitational) physics in a freely falling elevator, and a mere change of coordinates will then allow us to
describe physical phenomena in an arbitrarily accelerated frame. The precise mathematical meaning of such a freely
falling elevator is called a Fermi coordinate system: All along a given worldline (not necessarily a geodesic), there
exist coordinates such that the metric is diagonal gµν = diag(−1, 1, 1, 1) and all its first derivatives vanish, Γλ

µν = 0.

2.2. Experimental Tests

This assumption of a metric coupling implies four classes of observable effects. The first two of them are obvious
consequences of our writing of the special relativistic laws of physics within a freely falling elevator: (i) All constants
entering the Standard Model of particle physics (gauge couplings, mass scales) are space and time independent.
(ii) Local non-gravitational experiments are Lorentz invariant, i.e., do not exhibit preferred directions. We refer to
Refs. [3–5] for detailed discussions of the corresponding experimental tests, but let us quote here the most precise
ones: (i) The study of a natural fission reactor which took place two billion years ago in Oklo, Gabon, gives
|α̇/α| < 7× 10−17 yr−1 for the time derivative of the fine structure constant [6], i.e., six orders of magnitude smaller
than the inverse cosmological age ∼ 10−10 yr−1. (ii) The isotropy of space has notably been tested in Refs. [7] by
looking for possible quadrupolar shifts of nuclear energy levels, confirming that matter is coupled to a unique metric
tensor gµν at the 10−27 level.

The third observable effect is again an obvious consequence of the metric coupling, since is was actually used to
define the equivalence principle: (iii) All (non self-gravitating) bodies fall with the same acceleration in an external
gravitational field. This universality of free fall has been tested to a few parts in 1013 both with laboratory bodies
[8, 9] and by analyzing the accelerations of the Moon and the Earth towards the Sun [10]. [Actually, the small
(∼ 10−9mc2) gravitational binding energy of the Earth and the even smaller one of the Moon do enter this latter
test, therefore it also probes the strong equivalence principle, as we will see in Sec. 3.1 below.]

The fourth observable consequence of a metric coupling Smatter[matter, gµν ] seems less obvious: (iv) In a static
Newtonian potential g00 = −1+2U(x)/c2+O(1/c4), two clocks compared by means of electromagnetic signals exhibit
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a rate difference τ1/τ2 = 1 + [U(x1) − U(x2)] /c2 + O(1/c4). The fact that it is a consequence of the equivalence
principle alone, but does not depend on the actual dynamics of gravity, can be understood easily. Let us consider a
rocket accelerated upwards, with two clocks aft (i.e., at the bottom) and fore (at the top). Let also the first one send
light signals towards the second at a given frequency. During the time needed for light to propagate from one clock
to the other, the rocket accelerates, and therefore the second clock has a larger velocity when it receives the signal.
Because of the classical Doppler effect (special relativistic corrections are not even needed for this reasoning), the
second clock receives thus the signal with a lower frequency than it was emitted, exactly like a fire-truck siren sounds
lower when it is going away. In conclusion, the second clock sees the first one redshifted, i.e., ticking at a lower rate.
It now suffices to use the equivalence principle, which tells us that the same physical phenomenon should occur when
one replaces the accelerated rocket by a gravitational field. If two clocks are located at the top and bottom of a
tower, the lower one is therefore slower than the upper one. This gravitational redshift is called the “Einstein effect”,
and is independent of the composition of the clocks (in GR and theories satisfying the equivalence principle). It is
amusing to mention one of its consequences: It is impossible to synchronize even static clocks in presence of gravity.
The best experimental test of the Einstein effect dates back to the end of the 1970s [11]. By flying a hydrogen-maser
clock on a rocket, the gravitational redshift was confirmed at the 2 × 10−4 level. The Pharao/Aces project will
probe the 5 × 10−6 level around 2008 [12].

2.3. Non-Metric Coupling

Although the four observational consequences of the equivalence principle have already been confirmed with great
accuracy, it remains important to test them at an even better level. Indeed, extra-dimensional models, and notably
superstring theory, generically predict non-metric couplings, and thereby violations of the equivalence principle.
These violations are caused by the existence of scalar partners to the graviton, participating in the gravitational
interaction. In superstring theory, a first scalar field, called the dilaton, is already present in 10 dimensions in the
supermultiplet of the graviton (because of supersymmetry, needed to incorporate fermions in the theory). But many
extra scalar fields, called moduli, are also predicted when performing dimensional reduction down to our usual 4-
dimensional spacetime. The idea may be illustrated with the simplest case of the original Kaluza-Klein theory, i.e.,
general relativity written in 5 dimensions. The 5-dimensional metric gmn is decomposed schematically as

gmn =

(
gµν Aµ

Aν ϕ

)
, (2)

where gµν , Aµ and ϕ behave in 4 dimensions respectively as a metric tensor, an electromagnetic potential, and
a scalar field. [Actually, it is more convenient to define the 4-dimensional metric as being orthogonal to the 5th
dimension, i.e., as gµν − gµ5gν5/g55, to write the g55 component as e2ϕ instead of ϕ to get a standard kinetic term
for this scalar field, and to renormalize gµν and Aµ by powers of eϕ to simplify the expressions and their physical
interpretation.] In more than 5 dimensions, the components of the metric tensor in the extra dimensions (say gab

with a, b ≥ 5) behave as a symmetric matrix of scalar fields. They generically do not couple in the same way to
different matter fields. For instance, one gets a coupling to gauge bosons of the following exponential form

SEM =
∫

d4x
√−g

eϕ

4k2
0

FµνFρσgµρgνσ, (3)

which is called dilatonic coupling. This only contribution to the matter action actually suffices to prove that it cannot
be written in the purely metric form of the last term in (1). Indeed, let us define another tensor g̃µν ≡ A2(ϕ)gµν

(⇔ g̃µν ≡ A−2(ϕ)gµν), depending on an arbitrary function A of ϕ. Then action (3) can be rewritten as

SEM =
∫

d4x
[
A−4(ϕ)

√
−g̃
] eϕ

4k2
0

FµνFρσ

[
A2(ϕ)g̃µρ

] [
A2(ϕ)g̃νσ

]
=
∫

d4x
√
−g̃

eϕ

4k2
0

FµνFρσ g̃µρg̃νσ. (4)
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In conclusion, the explicit coupling of gauge bosons to the scalar field ϕ cannot be eliminated by a redefinition of
the metric, whatever the function A(ϕ). [This is called the conformal invariance of the electromagnetic action in 4
dimensions.] Therefore, an observer within a freely falling elevator can have experimental access to the external value
of ϕ from a local experiment involving photons, without looking out of a window. This already proves that gauge
bosons do not behave like in special relativity within this freely falling elevator, in contradiction with the arguments
of Sec. 2.1 defining the equivalence principle. Actually, since material bodies do contain a significant amount ∼ 1%
of electromagnetic binding (negative) energy, the dilatonic coupling (3) suffices to make different materials fall with
different accelerations in a given gravitational field. Another way to understand this violation of the universality
of free fall is to note that Eq. (3) is the standard electromagnetic action where the coupling constant k0 has been
replaced by an effective spacetime-dependent one keff = k0 e−ϕ(x)/2. Because of the electromagnetic binding energy
of material bodies, their masses m(ϕ) will therefore also be spacetime dependent, and their accelerations will get an
extra contribution δa = −∇ lnm(x) which depends on their composition.

This spacetime dependence of masses and coupling constants is actually predicted in superstring theory even at the
level of elementary particles. This theory indeed goes one step beyond GR. In Newtonian mechanics, both geometry
and coupling constants were assumed to be rigid. General relativity promoted geometry to a dynamical field, but
still assumed coupling constants to be fixed. In string theory, everything becomes dynamical, and notably masses
and coupling constants, determined by the vacuum expectation value of some fields. However, tree-level predictions
of strings happen to be experimentally ruled out by many orders of magnitude. Indeed, they generically predict
differences in the accelerations of different materials of the order of ∆a/a ∼ 10−5, whereas we saw in Sec. 2.2 that it
is experimentally constrained at the 5 × 10−13 level. Similarly, tree-level strings predict time variations of coupling
constants of the order of the inverse age of the Universe, say α̇/α ∼ H0 ∼ 10−10 yr−1, i.e., six orders of magnitude
larger than present experimental bounds. In Section 3.1 below, we will also see that the post-Newtonian parameters
βPPN − 1 and γPPN − 1 are observationally constrained respectively at the 10−4 and 10−5 level, whereas tree-level
strings would predict ∼ 40 for the first and ∼ 1 for the second. In conclusion, superstring theory seems to be ruled
out.

Fortunately, several mechanisms can reconcile this theory with experiment. A first argument is to claim that most
scalar fields should acquire a mass (for instance because of supersymmetry breaking), so that their effect would be
negligible at large enough distances. However, no natural mechanism is known to generate masses for all scalar fields
in the theory, and a single massless one suffices to violate equivalence principle tests by several orders of magnitude.
Moreover, difficult cosmological problems arise when considering such massive scalars, notably the fact that too much
energy is stored in the cosmological oscillations of ϕ(t). Another solution is to consider quantum loop corrections to
the tree-level string action, as proposed in [13–15]. Then the exponential coupling eϕ in matter actions like (3) are
replaced by more complicated functions ea(ϕ), where a(ϕ) may depend on the matter species. If all these functions
a(ϕ) happen to have a minimum at the same value of ϕ (for instance as ϕ → ∞ in the scenario of [15]), then one
can prove that the cosmological evolution of the Universe drives ϕ very efficiently towards this minimum. Therefore,
one explains naturally why matter is presently almost decoupled from any scalar field [∂ϕm(ϕmin) = 0], and one
can estimate that present deviations from GR should be of the order [∂ϕ ln m(ϕnow)]2 ∼ 10−19 → 10−10, typically
∼ 10−14 in the scenario of [13] and ∼ 10−12 in that of [15].

One may then reanalyze the various experimental tests of the equivalence principle within such a string-inspired
framework, and compare their probing power (see the table in the tenth transparency of my talk). For instance,
it happens that the constraint imposed by the Oklo reactor on the time variation of the fine-structure constant,
Sec. 2.2, translate as [∂ϕ ln m(ϕnow)]2 < 10−3.5. In other words, although this experimental bound is six orders of
magnitude tighter than what would be generically expected, it does not constrain at all the above string-inspired
scenarii which predict much smaller values. On the other hand, free-fall experiments prove to be the most sensitive
tests of such stringy deviations from the equivalence principle. While the (yet unfunded) NASA-ESA Satellite Test
of the Equivalence Principle (STEP) [16] would probe values as small as [∂ϕ ln m(ϕnow)]2 ∼ 10−14, the approved
CNES Microscope experiment [17] will reach deviations of order 10−11, close to expected effects in the scenario of
Ref. [15].
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3. DYNAMICS OF GRAVITY

Since the equivalence principle is experimentally tested with great accuracy, let us now assume that it is exactly
satisfied in order to focus on the second building block of a relativistic theory of gravity, namely the dynamics of
gravity itself. We will thus consider an action of the form

S = Sgravity + Smatter [matter, gµν ] , (5)

in which all matter fields are assumed to be universally coupled to a single second-rank symmetric tensor gµν , but
where the kinetic term Sgravity of this tensor is not yet specified.

3.1. Parametrized Post-Newtonian formalism

A first very useful framework to analyze the experimental constraints on Sgravity is called the parametrized post-
Newtonian (PPN) formalism. It actually does not assume anything about the dynamics of gravity, but the fact that
it is described by a metric tensor gµν and that it does not involve any characteristic length scale. The idea is to
write the most general form that gµν can take in presence of matter (described by perfect fluids), at the first post-
Newtonian order (i.e., when considering corrections of order 1/c2 with respect to the Newtonian interaction). The
first version dates back to 1923 [18], when Eddington wrote the usual Schwarzschild metric in isotropic coordinates

−g00 = 1 − 2
Gm

rc2
+ 2βPPN

(
Gm

rc2

)2

+ O
(

1
c6

)
,

gij = δij

(
1 + 2γPPNGm

rc2

)
+ O

(
1
c4

)
, (6)

but introduced inside some phenomenological parameters βPPN and γPPN instead of the factors βPPN = γPPN = 1
predicted by Einstein’s theory. [The extra factor that one may introduce in front of the 2Gm/rc2 term in g00

can always be absorbed in the definition of the gravitational mass Gm.] General relativity is thus embedded in a
two-dimensional space of theories, and one may now plot the various experimental constraints in the plane of the
(βPPN, γPPN) parameters, as shown in Fig. 1 and in the 12th transparency of my talk. Three different types of
constraints can be distinguished. The measurement of Mercury perihelion shift [19] gives the bound

|2 γPPN − βPPN − 1| < 3 × 10−3. (7)

Lunar laser ranging (LLR) consists in measuring the round-trip time of light travelling between Earth and corner
reflectors placed on the Moon. It presently gives us the Earth-Moon distance with few millimeter accuracy. One can
thus test very precisely if the Moon falls towards the Sun with the same acceleration as the Earth, and thereby if
the equivalence principle is satisfied even for gravitational binding energy itself (this is called the strong equivalence
principle, and the effect of its violation on the Moon orbit is called the Nordtvedt effect). The latest experimental
data [10] give the following bounds on the Eddington PPN parameters:

4 βPPN − γPPN − 3 = (4.4 ± 4.5) × 10−4. (8)

The third class of post-Newtonian tests in the solar system involves light rays and the various deflection and retar-
dation effects predicted by relativistic theories of gravity. All of them depend only on the γPPN parameter. Very
long baseline interferometry [20] (VLBI) allows the analysis of light deflection all over the celestial sphere, and yields
the bound |γPPN − 1| < 4× 10−4, but the tightest experimental limits come from the measurement of the time delay
variation to the Cassini spacecraft near solar conjunction [21]:

γPPN − 1 = (2.1 ± 2.3)× 10−5. (9)

(The 10−9 level should be reachable with the planned LATOR mission [22].) Equations (7), (8) and (9) define
three thin strips with different slopes in the (βPPN, γPPN) plane, and their intersection defines a tiny region around
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Figure 1: Solar-system constraints on the PPN parameters.

βPPN = γPPN = 1. Instead of just confirming GR, we have thus reached now a much stronger conclusion: General
relativity is basically the only theory consistent with solar-system experiments at the first post-Newtonian order.

This PPN formalism has been generalized by Schiff, Baierlin, and above all Nordtvedt and Will [1], who defined the
most elaborate version. It introduces 10 phenomenological parameters (including βPPN and γPPN) to describe any
possible deviation from GR at the first post-Newtonian order. All of them are presently constrained to be very close
to their general relativistic values, at a few percent level for the least easily tested (denoted ζ1, and parametrizing
a particular violation of the conservation of total momentum), to the 10−20 level for the best constrained one
(denoted α3, and parametrizing a particular preferred-frame effect combined with a violation of the total momentum
conservation). Their present experimental bounds are summarized in Table 4 of Ref. [3].

Several constraints on these PPN parameters come from the analysis of binary orbits, notably the Moon’s orbit
giving the above bounds (8). It is instructive to summarize the basic idea of such orbital tests. One needs to observe
the time evolution of the eccentricity vector, which points from the center of mass of the binary system towards the
periastron of the orbit, and whose norm is the eccentricity. If the two bodies do not have the same acceleration
(towards a third body, say the Galaxy center, or because of some preferred-frame effect), then one can show that
this eccentricity vector is the sum of a constant vector, proportional to the acceleration difference, and a rotating
one, corresponding to the usual periastron advance predicted by GR. Therefore, its mean is given by the constant
contribution, so that the orbit is polarized towards a particular direction, in a similar way as the Stark effect in
electromagnetism. Very tight constraints on some PPN parameters come from the fact that we know several binary
pulsars (composed of a neutron star and a white dwarf) whose eccentricity is vanishingly small. If there existed
some significant deviations from GR, the only explanation would be that the unknown rotating contribution to the
eccentricity vector precisely cancels the constant one at the time of our observation. But this is very improbable,
and the fact that several systems have simultaneously a vanishing eccentricity is even more improbable. A statistical
analysis then yields tight constraints on possible deviations from GR.
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3.2. Finite-Range Effects

Since the PPN formalism assumes that there is no characteristic length scale entering the gravitational interaction,
it does not allow us to test finite-range effects, caused for instance by massive partners to the graviton. As mentioned
in Sec. 2.3 above, extra-dimensional theories do predict the existence of massive scalar fields participating in the
gravitational interaction. However, their masses are expected to be very large in the standard Klein compactification
mechanism, so that no deviation from Newton’s 1/r2 law would be observable with present technology. On the
contrary, recent brane models can predict a priori observable effects at macroscopic scales without being inconsistent
with particle physics. The basic idea is that matter is described by the ends of open strings, constrained to live on
a 4-dimensional surface embedded in the extra-dimensional one of string theory (called the bulk). Therefore, matter
only feels 4 dimensions, and no deviation from the Standard Model of particle physics should occur. On the contrary,
gravity is described by closed strings, so that it can propagate in the bulk. Therefore, the gravitational interaction
may allow us to “feel” extra dimensions. A length scale is introduced in such brane models, either from the distance
between two branes (describing two parallel universes), or because of a cosmological constant yielding a de Sitter
metric for the bulk. Since this scale is only constrained by gravitational experiments, these models led to a renewal
of “fifth-force” experimental searches. Assuming that the gravitational potential takes the generic form

V =
Gm

r

(
1 + α e−r/λ

)
, (10)

where α and λ denote respectively the strength and range of an additional Yukawa potential (due to a massive
partner to the graviton), one can then plot the present experimental limits in the plane of these two parameters. The
latest results are displayed in Ref. [23]. The conclusion is that finite-range modifications of gravity at larger scales
than a millimeter are known to be smaller than a percent of the Newtonian interaction. On the other hand, O(1)
deviations from Newton’s law are still experimentally allowed for scales λ < 10−4 m, and they could even be 1010

larger than Newton’s force for λ � 10−6 m.
Several analyses have also been published to constrain the graviton mass itself, i.e., while assuming that the

Newtonian potential takes the form

VN =
Gm

r
e−r/λg , (11)

without any infinite range contribution contrary to Eq. (10) above. However, serious theoretical difficulties occur
when defining the notion of massive graviton. Around a flat background, Pauli and Fierz indeed showed that its mass
term must take a very specific form, otherwise negative-kinetic energy degrees of freedom (“ghosts”) are excited and
the vacuum becomes violently unstable. However, it was later realized that the Pauli-Fierz mass term is inconsistent
with solar-system tests even if the mass is vanishingly small [24]: There is a discontinuity between the case of a
strictly massless graviton (general relativity) and a extremely light one. In other words, the Mercury perihelion
shift suffices to rule out the existence of a massive graviton. Recent theoretical works have underlined that this
van Dam-Veltman-Zakharov discontinuity can been avoided when considering other types of mass terms, but they
sometimes did not realize that the presence of ghosts was deadly for the models. On the other hand, some brane
models have been shown to describe massive gravity without exhibiting the above discontinuity (see e.g. [25] and
references therein), so that they can pass all solar-system tests if the graviton mass scale is small enough. However, in
some particular background geometries, these models do contain ghost excitations, and their stability around other
backgrounds is not fully proven yet.

Since the notion of massive graviton is far for being cleanly defined, let us just quote briefly the phenomenological
constraints one may put on its mass mg, or equivalently, on its range λg ≡ h/(mgc). Assuming a Yukawa potential
of the form (11), Ref. [26] obtained the bound λg > 3 × 1015 m from solar-system planetary observations. Binary
pulsars (see Sec. 3.3.5 below) put a less stringent bound, λg > 1013 m, but depend on the radiative structure of
the theory [27]. Tighter limits on the graviton mass will be obtained when the Laser Interferometer Space Antenna
(LISA) will detect gravitational waves, by correlating their arrival time with that of photons coming from the same
source. The analysis of Refs. [28] shows that a bound λg > 2×1017 m would be reachable. But even better constraints
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will be obtained by analyzing the time evolution of the gravitational waves emitted by an inspiralling binary. The
basic idea is that a massive graviton should have a dispersion relation E = γmgc

2 ⇔ v2
g/c2 = 1 − m2

gc
4/E2, so that

high-energy gravitational waves propagate with a velocity vg ≈ c whereas low-energy ones have a lower velocity.
Since the gravitational waveform of an inspiralling binary is a “chirp”, i.e., a modulated sinusoid varying from low
frequencies to high ones, its propagation on a large distance from the source to the Earth will deform its shape. By
analyzing the correlation of the detected signals with the templates predicted by GR, one can thus put constraints on
the graviton mass. With the LIGO/VIRGO ground detectors, a bound λg > 6 × 1015 m would be reachable, i.e., of
the same order of magnitude as present solar-system limits. On the other hand, as shown in Refs. [29–31], the LISA
space antenna would allow us to probe values λg > 6 × 1019 m, i.e., to obtain the best constraint on the graviton
mass, mg < 2 × 10−26 eV/c2.

3.3. Field-Theoretical Approach

3.3.1. Scalar-tensor theories as a privileged class of models

Instead of adopting a purely phenomenological viewpoint, one may also test the dynamics of gravity within a well
defined field-theoretical framework. We still assume an action of the form (5), where matter is universally coupled to
a unique metric tensor, Smatter [matter, gµν ], but we now wish to specify how gµν propagates, i.e., to define its action
Sgravity. This physical metric tensor (defining the lengths and times measured by material rods and clocks) may be
a priori a combination of many different fields, for instance

gµν = A2(ϕ)
[
g∗µν + a1BµBν + a2g

∗
µνBρB

∗ρ + a3BµρB
∗ρ
ν + · · · ] , (12)

where A(ϕ) is an arbitrary function of a (spin-0) scalar field ϕ, g∗
µν describes the usual (spin-2) graviton whose kinetic

term is the Einstein-Hilbert one
∫ √−g∗R∗, Bµ is a (spin-1) vector field, Bµν is an antisymmetric tensor field, etc.

However, such vector of tensor partners to the graviton enter as squares in Eq. (12), and their field equations take
thus the form �B ∝ BT , where T denotes schematically the matter sources. In other words, they are not linearly
coupled to matter, and if their background value vanishes, matter will not generate them. On the other hand, if
their vacuum expectation value happens not to vanish, then this violates Lorentz invariance because there exists a
preferred frame in which they take simple forms (say, Bµ = (1, 0, 0, 0), defining an “ether”). Since there exist tight
experimental constraints on possible violations of Lorentz invariance of gravity (see Sec. 3.1 and Refs. [1–3]), vector
or extra tensor fields participating in the gravitational interaction seem thus almost excluded. Moreover, such fields
generically lead to serious theoretical difficulties when they are massless, notably the existence of ghosts (negative-
kinetic energy modes), causality violations, discontinuities in the field degrees of freedom, or ill-posedness of the
Cauchy problem. Actually, a massless vector field needs to be coupled to a conserved current (see [32]), say to the
baryonic number of nucleons if one wishes to mimic a gravitational force. However, the baryonic and gravitational
masses of a macroscopic body do differ significantly (because of the various binding energies), so that such a force
would violate equivalence principle tests by several orders of magnitude. Most of these problems can be avoided
if the vector or antisymmetric tensor fields are massive, but no theoretical motivation is known to couple them to
matter in the “metric” way Smatter [matter, gµν ]. Moreover, the effect of massive fields at large enough distances is
exponentially small with respect to the Newtonian interaction. It should be underlined that a consistent class of
gravity theories involving a constant-norm dynamical vector field, not directly coupled to matter, has been studied
in depth (see [33] and references therein). As expected, Lorentz invariance is violated, but post-Newtonian tests in
the solar system happen to be passed for a particular subclass of these models. As expected too, ghost degrees of
freedom and causality violations also generically occur, but there remains a nonzero domain of viable models. In
conclusion, vector partners to the graviton are not ruled out, but their analysis must be undertaken very carefully
in order to avoid the numerous theoretical problems they generically cause.

On the contrary, scalar partners to the graviton are both consistent and easier to study. Not only their existence
is predicted in all extra-dimensional theories, but they also play a crucial role in modern cosmology (notably during
the accelerated expansion phases of the Universe, i.e., during inflation or as “quintessence” fields). They also respect
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most of GR’s symmetries, namely conservation laws, constancy of non-gravitational constants, and local Lorentz
invariance even if a subsystem is influenced by external masses. They can also satisfy exactly the weak equivalence
principle (universality of free fall of laboratory-size objects) even for a massless scalar field. We will thus focus below
on this specific class of alternative theories. To simplify the discussion, we will also restrict it to models involving a
single scalar field, although the study of tensor–multi-scalar theories can also be done in great detail [34]. It suffices
to note that their phenomenology is richer but similar to the single scalar case, at least when all scalar degrees of
freedom carry positive energy, as required for the vacuum to be stable. The class of gravity theories we shall thus
consider below is defined by the action [35]

S =
c3

16πG

∫
d4x

√−g∗ (R∗ − 2gµν
∗ ∂µϕ∂νϕ) + Smatter

[
matter; gµν ≡ A2(ϕ)g∗µν

]
, (13)

which depends on one function A(ϕ) characterizing how matter is coupled to the scalar field. A potential V (ϕ) may
also be considered in this action, yielding finite-range effects as those discussed in Sec. 3.2 above. We will focus
below on “infinite-range” modifications of GR, i.e., actually on a scalar field whose mass (and other self-interactions
described by V (ϕ)) is small enough to be negligible at the solar-system or binary-pulsar scale.

3.3.2. Nordström’s theory

Before analyzing the predictions of general scalar-tensor theories in the weak-field (Sec. 3.3.3) and strong-field
(Sec. 3.3.4) regimes, it is instructive to have a quick look at the simplest example: the limiting case of a purely scalar
theory of gravity (without any spin-2 graviton), which was actually proposed by Nordström in 1913, two years before
Einstein’s general relativity. Its action reads

S = − c3

8πG

∫
d4x ηµν∂µϕ∂νϕ + Smatter

[
matter, gµν ≡ ϕ2ηµν

]
, (14)

where ηµν = diag(−1, 1, 1, 1) denotes the flat metric, so that the physical metric gµν (to which matter is universally
coupled) is conformally flat. This theory reproduces Newton’s law at the lowest order, it satisfies the weak equivalence
principle because of the metric coupling Smatter [matter, gµν ] assumed for the matter action, and it can even be proven
that it satisfies exactly the strong equivalence principle, i.e., that self-gravitating bodies fall with the same acceleration
as test particles in an externally imposed gravitational field. However, it does not predict any light deflection, since
null geodesics are such that ds2 = gµνdxµdxν = 0 ⇒ ηµνdxµdxν = 0. Therefore, light propagates in the flat metric
ηµν without feeling the conformal factor ϕ2 entering gµν . Another way to prove this result is to recall the conformal
invariance of the electromagnetic action, that we derived in Eq. (4) above [just remove the eϕ factor in this derivation,
and write gµν = ϕ2ηµν instead of g̃µν = A2(ϕ)gµν ]: There is strictly no coupling between photons and the scalar
field ϕ. This already suffices to rule out this theory experimentally [see notably Eq. (9) above], but this also points
out an instructive paradox. Since Nordström’s theory satisfies by construction the weak equivalence principle, the
physical effects of a gravitational field should be equivalent to those of an acceleration. But in an accelerated rocket,
light rays are necessarily curved, just because of the coordinate transformation which passes from a local inertial
frame (where light rays are straight lines) to the accelerated one. In conclusion, the equivalence principle suffices to
know that light must be attracted by a massive body. Therefore, like GR, Nordström’s theory should predict light
deflection! Actually, both theories do predict the same local effect on photons, consistently with the equivalence
principle. But when observing distant stars, a global effect also enters the observable deflection angle, because of the
curvature of space (i.e., the fact that the spatial metric gij is not flat). In Nordström’s theory, it happens that this
spatial contribution to the deflection angle exactly cancels the local one predicted by the equivalence principle. On
the contrary, both contributions are equal in GR, so that the global observable effect is exactly twice the naive result
given by the equivalence principle alone. This explains why Einstein had predicted half the correct value from 1911
to 1914, and derived the exact result only in 1915, when he wrote and solved the complete field equations for gµν .

This discussion underlines that simple reasonings, using the local equivalence between an accelerated rocket and
a gravitational field, can easily give correct results, as in Sec. 2.2 above, but may also be misleading when global
effects make the observable quantities more subtle to define. The absence of light deflection in the limiting case of
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Nordström’s theory, in which gravity is mediated by a (spin-0) scalar field but no (spin-2) graviton, also gives us
a hint of a generic effect in all scalar-tensor theories: Light deflection is always predicted to be smaller than the
general relativistic result.

3.3.3. Solar-system tests

Let us now come back to the general scalar-tensor action (13), characterized by a matter-scalar coupling function
A(ϕ). It is convenient to expand it around the (cosmologically-imposed) background value ϕ0 of the scalar field as

ln A(ϕ) = α0(ϕ − ϕ0) +
1
2
β0(ϕ − ϕ0)2 + O(ϕ − ϕ0)3, (15)

where α0 defines the linear coupling constant of matter to scalar excitations, β0 its quadratic coupling to two scalar
lines, etc. Newtonian and post-Newtonian predictions depend only on these first two coupling constants, α0 and β0.
For instance, the effective gravitational constant between two bodies is not given by the bare constant G entering
action (13), but by Geff = G(1 + α2

0), in which a contribution G comes from the exchange of a (spin-2) graviton
whereas Gα2

0 is due to the exchange of a (spin-0) scalar field, each matter-scalar vertex bringing a factor α0. [Actually,
the value of a gravitational constant depends on the chosen units, and the expression Geff = G(1 + α2

0) corresponds
to the “Einstein-frame” representation used to write action (13). An extra factor A2

0 = A(ϕ0)2 enters when using
the physical metric gµν = A2(ϕ)g∗µν to define observable quantities, and the actual gravitational constant which is
measured reads GA2

0(1+α2
0). No such extra factors A0 enter the computation of dimensionless observable quantities,

such as the post-Newtonian parameters βPPN and γPPN below.]
Let us first study light deflection within such scalar-tensor models. We saw in Eq. (4) above that the electromagnetic

action is conformal invariant in 4 dimensions. In our present metrically-coupled framework, this means that SEM =
1
4

∫
d4x

√−ggµρgνσFµνFρσ = 1
4

∫
d4x

√−g∗gµρ
∗ gνσ

∗ FµνFρσ , so that photons are coupled as in GR to the gravitons
g∗µν − ηµν , but they do not feel at all the global factor A2(ϕ) of the physical metric. In other words, they are totally
decoupled from the scalar field ϕ − ϕ0. Therefore, we can immediately deduce that the light deflection angle should
take strictly the same expression as in GR, namely ∆θ = 4Gm/bc2, where b denotes the impact parameter of the light
ray. But contrary to GR, we do not have direct experimental access to Gm in scalar-tensor theories, since planets feel
a gravitational potential Geffm/r = G(1 + α2

0)m/r. Therefore, although the deflection angle ∆θ is actually the same
as in GR, we interpret it in terms of observable quantities as ∆θ = 4Geffm/(1 + α2

0)bc
2 < 4Geffm/bc2. In conclusion,

when comparing the light-deflection angle to the gravitational force felt by test masses, we get a smaller result than
in GR. This is consistent with the limiting case of Nordström’s theory which does not predict any light deflection
(see Sec. 3.3.2 above), but the physical reason of this result is noteworthy: The light deflection itself is not smaller,
but the gravitational force felt by test masses is larger than in GR because of the extra attractive force caused by
the scalar partner to the graviton.

All other post-Newtonian corrections due to the scalar field can easily be derived [1, 34]. Since we are considering
metric theories, they fit within the PPN framework described in Sec. 3.1 above. Only two PPN parameters, out
of the 10 possible, take different values than in GR. This is due to the large number of symmetries respected by
scalar-tensor theories. They precisely correspond to the original Eddington parameters βPPN and γPPN, which can
now be written in terms of the coupling constants entering Eq. (15):

γPPN − 1 = − 2α2
0

1 + α2
0

, βPPN − 1 =
1
2

α0β0α0

(1 + α2
0)2

. (16)

As in the case of the effective gravitational constant Geff, the factor α2
0 comes from the exchange of a scalar particle

between two bodies, whereas α0β0α0 comes from a scalar exchange between three bodies. We notably recover the
above result for light deflection, since it reads in the PPN formalism ∆θ = 2(1+γPPN)Geffm/bc2 = 4Geffm/(1+α2

0)bc2.
All solar-system constraints quoted in Sec. 3.1 can thus be translated as bounds on the matter-scalar coupling

constants α0 and β0, as shown in Fig. 2 and on the 25th transparency of my talk. The tightest constraint comes from
the Cassini limit (9), which implies that the linear coupling constant |α0| must be smaller than 3 × 10−3, i.e., that
matter must be very weakly coupled to a possible scalar field in the solar system. On the other hand, the quadratic
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Figure 2: Solar-system constraints on the matter-scalar coupling function ln A(ϕ) = α0(ϕ−ϕ0) + 1
2
β0(ϕ−ϕ0)

2 +O(ϕ−ϕ0)
3.

The allowed region is shaded. The vertical axis (β0 = 0) corresponds to Brans-Dicke theory with a parameter 2ωBD+3 = 1/α2
0.

The horizontal axis (α0 = 0) corresponds to theories which are perturbatively equivalent to GR, i.e., which predict strictly no

deviation from it (at any order 1/cn) in the weak-field conditions of the solar system.

coupling constant β0 is almost not constrained by solar-system tests, because it appears multiplied by the already
small factor α2

0 < 10−5 in the observable PPN parameter βPPN, Eq. (16) above. In particular, it is important to note
that these weak-field experiments allow any sign for β0.

3.3.4. Strong-field predictions

In spite of their precision, present solar-system tests allow us to probe only the first post-Newtonian corrections to
GR, i.e., the terms explicitly displayed in Eq. (6) above, but not the higher-order corrections in powers of 1/c. This
is because the gravitational field is very weak in the solar system: The largest deviation from flat space is at the
surface of the Sun, and is of order Gm�/R�c2 ≈ 2×10−6, where m� and R� denote the mass and radius of the Sun.
For the Earth, this dimensionless ratio Gm⊕/R⊕c2 is even of order 7×10−10. It may happen that the correct theory
of gravity coincides with GR at the first post-Newtonian order but differs significantly from it at higher orders. Let
us therefore analyze scalar-tensor theories in the strong gravitational field regime, when the mass-to-radius ratio of a
body, Gm/Rc2, is not negligibly small. For instance, it is of order 0.2 for a neutron star, not far from the theoretical
maximum of 0.5 corresponding to black holes.

If one analyzes scalar-tensor theories in a perturbative expansion in powers of 1/c, it is easy to show that any
deviation from GR involves at least two factors α0, and has the schematic form

deviation from GR = α2
0 ×

[
λ0 + λ1

Gm

Rc2
+ λ2

(
Gm

Rc2

)2

+ · · ·
]

, (17)

where λ0, λ1, . . . are constants built from the coefficients α0, β0, . . . of expansion (15). Indeed, the classical
gravitational interactions we are studying may be described by tree-level Feynman diagrams, in which matter sources
are connected by graviton of scalar lines. All possible deviations from GR correspond to diagrams involving at least
one scalar exchange. But any scalar line must have at least two ends, and each of them involves the linear coupling
constant α0. We can thus conclude that any deviation from GR, at any post-Newtonian order, always involves a
global factor < α2

0, that we know from solar-system tests to be smaller than 10−5 (see Sec. 3.3.3 above). We thus
expect scalar-tensor theories to be close to GR at any order.

However, nonperturbative effects may occur in strong-field conditions: If the compactness Gm/Rc2 of a body is
greater than a critical value, the square brackets of Eq. (17) can become large enough to compensate even a vanishingly

33rd SLAC Summer Institute on Particle Physics (SSI 2005), 25 July - 5 August 2005

T025 11



ϕc

Energysm
all m

/R
 (Sun)

critical m
/R

large m
/R

(neutron star)

0

α0 = 0

ln A(ϕ)

ϕ

β0 < 0 large slope ≈ scalar charge αΑ

ϕc

Figure 3: Heuristic argument to explain the phenomenon of “spontaneous scalarization”. When β0 < 0 and the compactness

Gm/Rc2 of a body is large enough, it is energetically favorable to create a local scalar field different from the background

value. The body becomes thus strongly coupled to the scalar field.

small α2
0. To illustrate this, let us consider a model for which α0 vanishes strictly, i.e., which is perturbatively

equivalent to GR: There is strictly no deviation from GR at any order in a perturbative expansion in powers of 1/c.
A parabolic coupling function lnA(ϕ) = 1

2β0ϕ
2 suffices for our purpose (we set here ϕ0 = 0 to simplify). At the

center of a static body, the scalar field takes a particular value ϕc, and it decreases as 1/r outside. The energy of
such a scalar field configuration involves two contributions, coming respectively from the kinetic term and from the
matter-scalar coupling function in action (13). As a rough estimate of its value, one can write

Energy ≈
∫ [

1
2
(∂iϕ)2 + ρ eβ0ϕ2/2

]
≈ mc2

(
ϕ2

c/2
Gm/Rc2

+ eβ0ϕ2
c/2

)
. (18)

When β0 < 0, this is the sum of a parabola and a Gaussian, and if the compactness Gm/Rc2 is large enough, the
function Energy(ϕc) takes the shape of a Mexican hat (see Fig. 3 and the 27th transparency of my talk). The value
ϕc = 0 now corresponds to a local maximum of the energy. It is therefore energetically favorable for the star to create
a nonvanishing scalar field ϕc, and thereby a nonvanishing “scalar charge” d ln A(ϕc)/dϕc = β0ϕc. This phenomenon
is analogous to the spontaneous magnetization of ferromagnets.

This heuristic argument has been verified by explicit numerical calculations, taking into account the coupled
differential equations of the metric and the scalar field, and using various realistic equations of state to describe
nuclear matter inside a neutron star [36]. The correct definition of the linear coupling strength between a compact
body A and the scalar field reads αA ≡ ∂ ln mA/∂ϕ0. It is plotted in Fig. 4 for the particular model β0 = −6. One
finds that there exists indeed a “spontaneous scalarization” above a critical mass (whose value decreases as −β0

grows). On the other hand, if β0 > 0, both the above heuristic argument and the actual numerical calculations show
that |αA| < |α0|. In that case, one finds that neutron stars are even less coupled to the scalar field than solar-system
bodies.

The scalar charge αA enters the predictions of the theory in the same way as α0 in weak-field conditions. For
instance, in the orbital motion of two bodies A and B, the Eddington parameter γPPN keeps the form of Eq. (16),
but it now involves the product αAαB of the two scalar charges instead of α2

0. Similarly, the strong-field analogue
of βPPN involves products of scalar charges and their derivatives βA ≡ ∂αA/∂ϕ0. Since numerical calculations show
that |αA| can be of order 1 when spontaneous scalarization develops (see Fig. 4), one thus expects O(1) deviations
from GR in strong-field conditions, even if the theory is perturbatively equivalent to GR in the weak-field conditions
of the solar system. Moreover, the quadratic coupling strength βA can take very large numerical values near the
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critical mass, like the magnetic susceptibility of ferromagnets. Therefore, even larger deviations from GR are found
when the mass of a neutron star happens to be close to the critical one.

3.3.5. Binary-pulsar tests

In order to test gravity in the strong-field regime, one needs to observe very compact objects. As mentioned above,
black holes seem to be good candidates because their compactness Gm/Rc2 takes the maximum theoretical value
of 1

2 . However, they can only be observed indirectly (via the radiation emitted by accreted matter), and they also
have a serious theoretical drawback: Even if a scalar partner to the graviton does exist, black holes are anyway
totally decoupled from it, because of the “no hair theorem”. Therefore, they behave exactly as in GR in a given
background metric, and they cannot be used to discriminate scalar-tensor models from GR.

On the other hand, neutron stars are still quite compact bodies (Gm/Rc2 � 0.2), but they can be strongly coupled
to a putative scalar field (because of the “spontaneous scalarization” phenomenon described above), and above all
they can be directly observed as pulsars. A pulsar is indeed a rapidly rotating and highly magnetized neutron star,
emitting a beam of radio waves, like a lighthouse. Experiment tells us that isolated pulsars are very stable clocks
when they are old enough. A pulsar A orbiting a companion B is thus a moving clock, the best tool that one
could dream of to test a relativistic theory. Indeed, by precisely timing its pulse arrivals, one gets a stroboscopic
information on its orbit, and one can measure several relativistic effects. Such effects do depend on the two masses
mA, mB, which are not directly measurable. However, two different effects suffice to determine them, and a third
relativistic observable then gives a test of the theory.

For instance, in the case of the famous Hulse-Taylor binary pulsar PSR B1913+16, three relativistic parameters
have been determined with great accuracy [37]: (i) the Einstein time delay parameter γT , which combines the second-
order Doppler effect (∝ v2

A/2c2, where vA is the pulsar’s velocity) together with the redshift due to the companion
(∝ GmB/rABc2, where rAB the pulsar-companion distance); (ii) the periastron advance ω̇ (relativistic effect of order
v2/c2); and (iii) the rate of change of the orbital period, Ṗ , caused by gravitational radiation damping (an effect
of order v5/c5 in GR, but of order v3/c3 in scalar-tensor theories; see below). The same parameters have also
been measured for the neutron star-white dwarf binary PSR J1141−6545, but with much less accuracy [38]. In
addition to these three parameters, (iv) the “range” (global factor GmB/c3) and (v) “shape” (time dependence)
of the Shapiro time delay have also been determined for two other binary pulsars, PSR B1534+12 [39] and PSR
J0737−3039 [40]. The latter system is particularly interesting because both bodies have been detected as pulsars.
Since their independent timing gives us the (projected) size of their respective orbits, the ratio of these sizes provides
a direct measure of (vi) the mass ratio mA/mB ≈ 1.07. In other words, 6 relativistic parameters have been measured
for the double pulsar PSR J0737−3039. After using two of them to determine the masses mA and mB, this system
thereby provides 6 − 2 = 4 tests of relativistic gravity in strong-field conditions.
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Figure 5: Mass plane (mA = pulsar, mB = companion) of the Hulse-Taylor binary pulsar PSR B1913+16 in general relativity

(left panel) and for a scalar-tensor theory with β0 = −6 (right panel). The widths of the lines are larger than 1σ error bars.

While GR passes the test with flying colors, the value β0 = −6 is ruled out.

The clearest way to illustrate these tests is to plot the various experimental constraints in the mass plane (mA, mB),
for a given theory of gravity. Any theory indeed predicts the expressions of the various timing parameters in terms
of these unknown masses and other (Keplerian) observables, such as the orbital period and the eccentricity. The
equations predictions(mA, mB) = observed values thereby define different curves in the mass plane, or rather different
strips if one takes into account experimental errors. If these strips have a common intersection, there exists a pair
of masses which is consistent with all observables, and the theory is confirmed. On the other hand, if the strips do
not meet simultaneously, the theory is ruled out.

Since Ingrid Stairs’ contribution to the present SLAC Summer Institute is precisely devoted to binary pulsars, I
refer to her lecture notes for up-to-date plots of the mass planes within GR (see also Fig. 5 and the 30th to 33rd
transparencies of my talk). Einstein’s theory passes with flying colors the 9 tests provided by the above 4 binary
pulsars. In scalar-tensor theories, the same mass planes may be plotted, but since the theoretical predictions for the
various relativistic parameters differ from those of GR, the various strips are deformed. For some theories, these strips
still have a common intersection (not necessarily for the same values of the masses mA and mB that were consistent
with GR). When they do not, we can conclude that the corresponding theory is ruled out. These deformations of
strips in the mass plane are illustrated in Fig. 5 and the 35th transparency of my talk.

The allowed region of the theory space (|α0|, β0) is displayed in Fig. 6, as well as in transparencies 36 and 38–40
of my talk. This illustrates vividly the qualitative difference between solar-system and binary-pulsar observations.
Indeed, while weak-field tests only constrain the linear coupling constant |α0| to be small without giving much
information about the quadratic coupling constant β0 (see Sec. 3.3.3 above), binary pulsars impose

β0 > −4.5 , (19)

even for a vanishingly small α0. This constraint is due to the spontaneous scalarization of neutron stars, which occurs
when −β0 is large enough. Equations (16) allow us to rewrite this inequality in terms of the Eddington parameters
βPPN and γPPN, which are both consistent with 1 in the solar system. One finds

βPPN − 1
γPPN − 1

< 1.1 . (20)

The singular (0/0) nature of this ratio underlines why such a conclusion could not be obtained in weak-field experi-
ments.
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and the curve labeled SEP corresponds to tests of the “strong equivalence principle” using a set of several neutron star-white

dwarf low-eccentricity binaries. The most constraining binary-pulsar tests are those of PSR B1913+16 and PSR J1141−6545.

While solar system tests impose a small value of |α0|, binary pulsars impose the orthogonal constraint β0 > −4.5.

The two most constraining binary pulsars, for scalar-tensor theories, are the Hulse-Taylor one (PSR B1913+16),
which has been observed for more than 30 years and has thus very small experimental uncertainties, and paradoxically
the neutron star-white dwarf system PSR J1141−6545, in spite of its still large experimental errors. The reason
why the latter system is so constraining is its asymmetry. Indeed, while the pulsar is a neutron star which can
spontaneously scalarize and acquire a large scalar charge αA, the white dwarf is much less compact and keeps a
negligible scalar charge ≈ α0. This causes a huge deviation from GR in the orbital period variation Ṗ . Indeed, the
energy flux carried out by gravitational waves is of the form

Energy flux =
{

Quadrupole
c5

+ O
(

1
c7

)}
helicity 2

+

{
Monopole

c

(
0 +

1
c2

)2

+
Dipole

c3
(αA − αB)2 +

Quadrupole
c5

+ O
(

1
c7

)}
helicity 0

. (21)

The first curly brackets contain the prediction of general relativity, of order v5/c5, whereas the second ones contain
the extra contributions predicted in tensor-scalar theories. In particular, the dipolar contribution is of order v3/c3,
much larger than the usual quadrupole of GR if the two scalar charge are significantly different. This dipolar emission
of (helicity-0) gravitational waves has been derived long ago [41], and already used to constrain scalar-tensor theories
with different neutron star-white dwarf binaries (notably PSR B0655+64) [34, 36, 42], but the better timing of PSR
J1141−6545 makes it much more constraining. It is not only infinitely more constraining than solar-system tests in
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the region β0 < −4.5 of the theory space (like all binary pulsars), but it is even almost as constraining as them in
the region β0 > 0.

3.3.6. Gravitational waves antennas

The LIGO and VIRGO interferometers will detect gravitational waves emitted by inspiralling binaries. Since
matter is known to be weakly coupled to the scalar field in the solar system (small value of |α0|), these detectors will
not be sensitive of the helicity-0 waves. On the other hand, the time evolution of the helicity-2 chirp does depend on
the energy flux (21), which differs significantly from the GR prediction when the scalar charges αA, αB are nonzero.
Therefore, the GR wave templates used for matched filtering in LIGO and VIRGO may not be accurate if there exists
a scalar partner to the graviton, and the signal-to-noise ratio may then drop. Fortunately, it was shown in [36] that
binary-pulsar data are so precise that they already exclude the models which would have predicted significant effects
in the gravitational waveforms (see transparencies 47 and 48 of my talk). Therefore, although these interferometers
are a priori more sensitive to the scalar field than classic solar-system tests, one may securely use the GR wave
templates for their data analysis. On the other hand, it was shown in [29–31] that the LISA space interferometer can
be sensitive to scalar effects which are still allowed by all present tests. However, future binary-pulsar data should
probe them before the LISA mission is launched (see transparencies 49–52 of my talk and Ref. [43]).

4. PUZZLING ISSUES

The various tests of GR described in the previous sections, both in weak-field and strong-field conditions, give us a
strong confidence in this theory. Nevertheless, there exist some puzzling experimental issues, which may either be a
hint that the behavior of gravity needs to be changed at large distances, or may be interpreted as the effect of rather
strange matter components filling our Universe, without modifying gravity itself.

Within the solar system, at distances from 20 to 70 AU, the two Pioneer 10 and 11 spacecrafts exhibit an anomalous
constant acceleration towards the Sun, of about 8.5 × 10−10 m.s−2. This extra acceleration has the same direction
and the same sign as the standard Newtonian force, and could not be explained by any known source of noise in the
system. There are actually four different directions which are almost parallel for these spacecrafts: their spin axis,
their velocity, the Sun, and the Earth. To understand better the physical origin of this anomalous force, a careful
reanalysis of all recorded data (over ∼ 10 years) has been undertaken, and preliminary results seem to confirm that
it is directed towards the Sun, rather than the three other possible directions [44]. It should thus be caused by a
gravitational phenomenon.

The combination of all cosmological observations is consistent with a Universe filled with about 72% of “dark
energy”, 24% of “dark matter”, and only 4% of ordinary baryonic matter. Although this is a priori not a problem
for the theory of gravity itself, these adjectives “dark” nevertheless underline that we do not know the nature of 96%
of the energy content of the Universe.

The existence of dark energy is suggested mainly by the observation of type Ia supernovae, which indicate that the
expansion of the Universe is presently accelerating. This dark energy is a fluid with a negative pressure approximately
opposite to its energy density. It may be easily described by a cosmological constant, but its observed value Λ ≈
3×10−122c3/�G is so small that its interpretation as the vacuum energy is very problematic. Such small numbers can
however be obtained naturally within “quintessence” models, in which the cosmological constant is actually replaced
by the potential V (ϕ) of a scalar field slowly rolling down towards its minimum. However, there remains to explain
why the dark energy density (ΩΛ ≈ 0.7 in units of the critical density) and the matter density (Ωm ≈ 0.3) are
numerically close at present, whereas they differ by many orders of magnitude during most of the Universe evolution.

Aside from these fine-tuning problems, one may adopt a phenomenological point of view and try to describe the
recent evolution of our Universe with a simple scalar-tensor theory of gravity. Then one finds that cosmological
data a priori allow us to reconstruct both the matter-scalar coupling function A(ϕ) entering action (13) and the
possible potential V (ϕ) of the scalar field. Of course, such a reconstruction is very noisy as compared to solar-
system and binary-pulsar tests of scalar-tensor theories, but it is important to underline the qualitative difference
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of cosmological observations. Instead of just constraining the first derivative α0 of A(ϕ), like solar-system tests, or
its second derivative β0, like binary-pulsar tests, cosmology allows us to reconstruct the full shape of both A(ϕ) and
V (ϕ) for the values of ϕ probed by the data [45, 46].

Dark matter is a fluid with vanishingly small pressure, like ordinary baryonic matter, but it is seen only via its
gravitational field. It has notably no interaction with light, and is therefore dark and transparent. It has also
vanishingly small interaction with itself, aside from its gravitational influence. Its existence is suggested by several
data. For instance, when combining the value of ΩΛ consistent with type Ia supernovae with the fact that ΩΛ+Ωm ≈ 1
as given by the analysis of the first acoustic peak of the Cosmic Microwave Background (CMB), one gets a matter
density Ωm ≈ 0.3 which is an order of magnitude larger than our estimates of baryonic matter in the Universe.
Moreover, galaxies (and clusters of galaxies) rotate as is they were rigid bodies [47], whereas Newton’s law predicts
that outer stars should rotate around the galaxy center with a much slower velocity than inner stars. This can be
explained without modifying gravity by invoking the existence of a halo of dark matter surrounding the galaxy (or
cluster), rounder than the galaxy itself because of the absence of self-interaction of dark matter. The amount of
such dark matter needed to account for galaxy rotation curves is consistent with the above cosmological estimate
Ωm ≈ 0.3.

Nevertheless, such a dark component of matter remains puzzling, and various theorists have tried to account
for experimental data via a modification of gravity at large distances. For instance, Milgrom proposed in 1983 a
phenomenological modification of Newton’s law [48] which still superbly fits galaxy rotation curves [49] (although
clusters anyway require some amount of dark matter), and automatically recovers the Tully-Fisher law [50] v4

∞ ∝ M

(where M denotes the baryonic mass of a galaxy, and v∞ the asymptotic circular velocity of visible matter in its
outer region). The norm a of a particle’s acceleration is assumed to be given by its Newtonian value aN when it is
greater than a universal constant denoted a0 ≈ 1.2 × 10−10 m.s−2, but to read a =

√
aNa0 in the small-acceleration

regime a < a0. In particular, the gravitational acceleration should now read a =
√

GMa0/r at large distance, instead
of the usual GM/r2 law. Various attempts have been made to derive such a modified Newtonian dynamics (MOND)
from a consistent relativistic field theory. However, many models contain tachyons (negative mass squared) or ghosts
(negative kinetic energy) and are thus unstable. Moreover, many models write actions which depend on the mass M

of the considered galaxy, i.e., are actually using a different theory for each galaxy. At present, the best candidate is
certainly the Bekenstein-Sanders model [51, 52], although its stability is not fully proven yet. It takes into account all
the subtleties understood in the previous attempts, and therefore looks quite complicated. It incorporates a vector
and two scalar fields in addition to the usual graviton of general relativity, and depends on two coupling constants
and two functions of one scalar field. These functions can been tuned to give the right phenomenology (including for
the Pioneer anomaly, if needed), but there is no fundamental principle to fix them. The vector field is introduced in
order to predict the right light deflection. Indeed, we saw in Secs. 3.3.2 and 3.3.3 above that scalar-tensor theories
always predict a smaller light deflection than GR. Therefore, a trick is needed to make it larger, as if there were
more matter curving spacetime. The idea is to introduce a preferred frame (i.e., an “ether”), and to couple the scalar
field differently to g00 and the spatial metric gij . An inverse coupling e2ϕg00 and e−2ϕgij mimics for instance the
Schwarzschild metric of GR, so that the contribution of the scalar field now increases light deflection. A vector field uµ

is just a convenient way to define such a preferred frame in a covariant way: If uµ = (1, 0, 0, 0) in the preferred frame,
then −uµuν behaves as g00, whereas gµν + uµuν defines the corresponding gij . We thus understand why Bekenstein
and Sanders assume that matter is coupled to a physical metric g̃µν = e−2ϕ(gµν + uµuν) − e2ϕuµuν. It should be
noted that the precise exponentials of ϕ introduced in this expression are chosen in order to reproduce the same
light deflection as the corresponding “dark matter”. In other words, this is not a prediction of the model, and one
would just need to change these factors to increase or decrease the amount of light deflection caused by dark matter
if experiment told us so. In spite of this lack of predictiveness, this model does work well, and the preferred frame
defined by the vector field does not seem to cause observational problems in the solar system. However, modified
gravity models seem to have serious difficulties in reproducing the right CMB power spectrum. For instance, it has
been computed in [53] for the above Bekenstein model, and the positions and heights of the acoustic peaks was found
to be inconsistent with observed data. By assuming a significant amount of energy density due to massive neutrinos
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(Ων = 0.17), it was however possible to reproduce perfectly the first two peaks. Since such a value 0.17 is not so far
from the needed amount of dark matter (Ωm = 0.24), this looks like a failure of modified-gravity models. However,
massive neutrinos are too light to cluster on the size of galaxies, whereas they could form the amount of dark matter
which is still needed for galaxy clusters in the MOND scenario. Therefore, it is still important to study in depth such
modifications of gravity at large distances, although the dark matter paradigm seems today more and more robust.

5. CONCLUSIONS

General relativity passes all present tests with flying colors, but alternative theories are anyway very important to
study. Deviations from GR are indeed predicted in all extra-dimensional theories, notably in superstrings. Moreover,
contrasting alternatives to GR are useful in order to understand precisely which features of the theory have been tested
in a particular experiment, and to suggest new experiments probing the remaining features. The main conclusion is
illustrated by our study of the privileged class of scalar-tensor theories: There exists a qualitative difference between
solar-system tests (probing weak-field gravity at the 10−5 level), binary-pulsar tests (probing strong-field gravity),
and cosmological observations (probing the time-evolution of the Universe). While solar-system tests impose that the
slope of the matter-scalar coupling function A(ϕ) must be small, binary-pulsar data impose that its second derivative
cannot take large and negative values, and cosmological observations a priori allow us to reconstruct the full shape
of both A(ϕ) and the scalar field potential V (ϕ), but with much more noisy results. We finally mentioned some
puzzling issues, which still need to be understood either theoretically or experimentally. They do not contradict GR
in a direct way, but may suggest modifications of Newton’s law at large distances.
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