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Canada

Tests of general relativity from equivalence principle violations to binary orbital effects in the strong-gravitational-field

regime can be achieved using observations of radio pulsars. This article provides an overview of the process, including

recent updates of classic tests and new experiments made possible by the recently discovered double-pulsar system.

1. INTRODUCTION

The potential of pulsars for high-precision tests of the predictions of general relativity (GR) was recognized imme-
diately upon the discovery of the first pulsar binary system, PSR B1913+16 [1–5]. Since then, pulsars have provided
stringent tests of equivalence principle violations and both radiative and quasi-static strong-field effects. This article
presents an overview of these tests (see also [6] for a fuller though now somewhat dated description of much of this
material, and [7] for an intermediate version), including the exciting recent discovery of a double-pulsar system [8, 9].

2. OVERVIEW OF PULSAR OBSERVATIONS

Radio pulsars were discovered in 1967 [10], and quickly identified with rotating neutron stars [11, 12]. The
lighthouse-like beams of radio waves emitted from a pulsar’s magnetic poles may hit the Earth once per rotation
of the neutron star, producing a “pulse” of emission detectable by powerful radio telescopes. Pulsar timing takes
advantage of the tremendous overall stability of pulsar rotation to measure tiny deviations from perfect observed
regularity, and hence to derive science concerning neutron stars themselves, evolution of stellar systems, our Galaxy,
and even cosmology.

While most of the roughly 1700 currently known pulsars have spin periods close to 1 second and estimated
dipolar magnetic fields within a couple of orders of magnitude of 1012 G, there is an important separate class of
older “millisecond” or “recycled” pulsars [13] which have been spun up to faster periods by accretion of matter and
angular momentum from an evolving companion star (see, e.g., [14] and [15] for reviews of the evolution of such
binary systems). It is precisely these recycled pulsars that form the most valuable resource for tests of GR.

Despite nearly 40 years of effort, there is still little consensus on the pulsar radio emission mechanism. Fortunately,
although individual pulses display enormous variations in shape and intensity, a profile “integrated” over several
hundred or thousand pulses (i.e., a few minutes) yields a shape – a “standard profile” – that is reproducible for a
given pulsar at a given frequency. This allows us to use the integrated pulse shape as a tool for precision timing
purposes without needing to understand the detailed physics behind its production.

Pulsar observations are usually conducted at radio frequencies from a few hundred MHz to a few GHz. At the lowest
frequencies, pulsar signals are comparatively strong (e.g.,[16]), but propagation effects (scattering, scintillation and
dispersion) in the interstellar medium can significantly distort the received pulse shape. The effects of scattering can
be reduced by observing at higher frequencies, and the effects of scintillation by using wide instrumental bandwidths.
Dispersive smearing can be mitigated either by using a filterbank instrument, in which the observing bandpass is
divided into many small channels before the signal is detected, or, preferably, by coherent dedispersion [17], in which
the full amplitude and phase information of the signal are obtained, and the inverse of the frequency-dependent
dispersive filter is applied in hardware or software (e.g., [18–20]). This technique provides the closest reproduction of
the pulsed signal as emitted by the pulsar and hence the best basis from which to derive timing information; many
of the results discussed below rely on such instrumentation.
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Once dispersion has been removed, the resultant time series is typically integrated or “folded” modulo the pulse
period predicted for the observatory’s reference frame. The pulse period may not be very easily predicted from the
discovery period, especially if the pulsar happens to be in a binary system. The goal of pulsar timing is to develop
a model of the pulse phase as a function of time, so that all future pulse arrival times can be predicted with a good
degree of accuracy.

The profile accumulated over several minutes is compared by cross-correlation with the standard profile for the
pulsar at that observing frequency. A commonly used version of the cross-correlation algorithm compares the two
profiles in the frequency domain [21], although this approach can lead to some systematics depending on the observa-
tions used to produce the standard profile [22]. Once the phase shift of the observed profile relative to the standard
profile is known, that offset is added to the start time of the observation in order to yield a “Time of Arrival” (TOA)
that is representative of that few-minute integration. In practice, observers frequently use a time- and phase-stamp
near the middle of the integration in order to minimize systematic errors due to a poorly known pulse period. As a
rule, pulse timing precision is best for bright pulsars with short spin periods, narrow profiles with steep edges, and
little if any profile corruption due to interstellar scattering.

Once TOAs are obtained, it becomes possible to fit a model of the pulsar’s timing behavior, enumerating every
rotation of the neutron star. Based on the magnetic dipole model [11, 12], the pulsar is expected to lose rotational
energy and thus “spin down”. The primary component of the timing model is therefore a Taylor expansion of the
pulse phase φ with time t:

φ = φ0 + ν(t − t0) +
1
2
ν̇(t − t0)2 + . . . (1)

where φ0 and t0 are a reference phase and time, respectively, and the pulse frequency ν is the time derivative of
the pulse phase. Note that the fitted parameters ν and ν̇ and the magnetic dipole model can be used to derive an
estimate of the surface magnetic field B sinα:

B sinα =
( −3Iν̇c3

8π2R6ν3

)1/2

≈ 3.2 × 1019

(−ν̇

ν3

)1/2

G, (2)

where α is the inclination angle between the pulsar spin axis and the magnetic dipole axis, R is the radius of the
neutron star, about 106 cm, and the moment of inertia is I � 1045 g cm2. In turn, integration of the energy loss,
along with the assumption that the pulsar was born with infinite spin frequency, yields a “characteristic age” τc for
the pulsar:

τc = − ν

2ν̇
. (3)

Equation 1 refers to pulse frequencies and times in a reference frame that is inertial relative to the pulsar, and can
be used only once TOAs derived in the rest frame of a telescope on the Earth have been translated to such a reference
frame. The best approximation available for an inertial reference frame is that of the Solar System Barycenter (SSB),
and the TOA conversion is typically uses the “DE200” or “DE405” ephemerides from the Jet Propulsion Laboratory
[23, 24]. Some of the tests of GR described below still require correcting for the small relative accelerations of the
SSB and the center-of-mass frames of binary pulsar systems. The required transformation between a TOA at the
telescope, τ , and the emission time t from the pulsar is:

t = τ − D/f2 + ΔR� + ΔE� − ΔS� − ΔR − ΔE − ΔS . (4)

Here D/f2 accounts for the dispersive delay in seconds of the observed pulse at radio frequency f relative to infinite
frequency. The Roemer term, ΔR�, takes out the travel time across the Solar System based on the relative positions
of the pulsar and the telescope, including, if needed, the proper motion and parallax of the pulsar. The Einstein delay,
ΔE�, accounts for the time dilation and gravitational redshift due to the Sun and other masses in the Solar System,
while the Shapiro delay, ΔS�, expresses the excess delay to the pulsar signal as it travels through the gravitational
well of the Sun — a maximum delay of about 120μs at the limb of the Sun. See [25] for a fuller discussion of these
terms.
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The terms ΔR, ΔE , ΔS in Equation 4 describe the equivalent “Roemer”, “Einstein” and “Shapiro” delays within
a pulsar binary system. The majority of binary pulsar orbits are adequately described by five Keplerian parameters:
the orbital period Pb, the projected semi-major axis x, the eccentricity e, and the longitude ω and epoch T0 of
periastron. The angle ω is measured from the line of nodes, Ω, where the pulsar orbit intersects the plane of the sky
and the pulsar is moving away from the SSB. In many cases, one or more relativistic corrections to the Keplerian
parameters must also be fit. The best modern timing model [26–29] incorporates a number of “post-Keplerian”
timing parameters which are included in the description of the three delay terms. These are fit in a completely
phenomenological manner and hence do not assume that any particular theory of gravity describes the pulsar orbit.
The delays are written primarily in terms of the phase of the orbit, defined by the eccentric anomaly u and true
anomaly Ae(u), as well as ω, Pb and their time derivatives, if needed. These are related by:

u − e sinu = 2π

[(
T − T0

Pb

)
− Ṗb

2

(
T − T0

Pb

)2
]

, (5)

Ae(u) = 2 arctan

[(
1 + e

1 − e

)1/2

tan
u

2

]
, (6)

ω = ω0 +
(

Pb ω̇

2π

)
Ae(u), (7)

where ω0 is the reference value of ω at time T0. The delay terms then become:

ΔR = x sin ω(cosu − e(1 + δr)) + x(1 − e2(1 + δθ)2)1/2 cosω sin u, (8)

ΔE = γ sin u, (9)

ΔS = −2r ln
{
1 − e cosu − s

[
sinω(cosu − e) + (1 − e2)1/2 cosω sin u

]}
. (10)

Here γ represents the time dilation and gravitational redshift due to the pulsar’s motion in the gravitational potential
of its companion, and r and s give the “range” and “shape” of the Shapiro delay. Together with the orbital period
derivative Ṗb and the advance of periastron ω̇, they make up the post-Keplerian timing parameters that can be fit
for various pulsar binaries. A fuller description of the timing model also includes the aberration parameters δr and
δθ, but these parameters are usually indistinguishable from the other orbital parameters. The interpretation of the
measured post-Keplerian timing parameters will be discussed in the context of double-neutron-star tests of GR in
Section 4.

A pulsar timing model can therefore require a large number of parameters. Most observers accomplish the model
fitting, accounting for all the delay terms, using the program tempo 1. Accurate time-keeping is naturally of
primary importance in pulsar modeling. General practice is to derive the time-stamp on each observation from
the Observatory’s local time standard — typically a Hydrogen maser — and to apply, retroactively, corrections to
well-maintained time standards such as UTC(BIPM), Universal Coordinated Time as maintained by the Bureau
International des Poids et Mesures.

3. EQUIVALENCE PRINCIPLE VIOLATIONS

Equivalence principles describe our expectations of experimental outcomes in different reference frames; for full
descriptions see, for example, [30] or [31]. The Weak Equivalence Principle (WEP), formalized by Newton, states that

1http://pulsar.princeton.edu/tempo
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in an external gravitational field, objects of different compositions and masses will experience the same acceleration.
The Einstein Equivalence Principle (EEP) extends this idea to include Lorentz invariance (non-existence of preferred
reference frames) and positional invariance (non-existence of preferred locations) for non-gravitational experiments,
predicting that these experiments will have the same outcomes in all inertial reference frames. The Strong Equivalence
Principle (SEP) adds Lorentz and positional invariance for gravitational experiments, thus including experiments on
objects with strong self-gravitation. GR incorporates the SEP, but alternate theories of gravity may violate all or
parts of it.

The parametrized post-Newtonian (PPN) formalism [32] provides a uniform description of the weak-gravitational-
field limit and facilitates comparisons of different gravitational theories theories in this limit. This formalism has
10 parameters (γPPN, β, ξ,α1, α2, α3, ζ1, ζ2, ζ3 and ζ4); see [33] for full descriptions and physical meanings of
these parameters. This formalism has been extended [34, 35] to include strong-field effects for generalized tensor-
multiscalar gravitational theories. This allows a better understanding of limits in the strong-field regime imposed
by systems including pulsars and white dwarfs, for which the amounts of self-gravitation are very different. Here,
for instance, α1 becomes α̂1 = α1 + α′

1(c1 + c2) + ..., where ci describes the “compactness” of mass mi . The
compactness can be written ci = −2∂ ln mi/∂ ln G � −2(Egrav/(mc2))i, where G is Newton’s constant and Egrav

i is
the gravitational self-energy of mass mi. The compactness is about −0.2 for a neutron star (NS) and −10−4 for a
white dwarf (WD). Pulsar timing sets limits on α̂1, which tests for the existence of preferred-frame effects (violations
of Lorentz invariance) and α̂3, which, in addition to testing for preferred-frame effects, also implies non-conservation
of momentum if non-zero. (A test of ζ̂2, which is also a non-conservative parameter, relies on the second period
derivative of the double-neutron-star binary PSR B1913+16 [36]. As a measurement of this quantity could also be
due to timing noise or to geodetic precession [37] this test will not be considered further.) Pulsars can also be used
to set limits on other SEP-violation effects which constrain combinations of the PPN parameters: the Nordtvedt
(“gravitational Stark”) effect, dipolar gravitational radiation, and variation of Newton’s constant.

3.1. Strong Equivalence Principle

Direct tests of the SEP through Lunar Laser Ranging (LLR) experiments were first suggested by [38]. As the
masses of Earth and the Moon contain different fractional contributions from self-gravitation, a violation of the SEP
would cause them to fall differently in the Sun’s gravitational field and “polarize” the orbit in the direction of the
Sun. LLR tests have set a limit of |η| < 0.001 (e.g., [33, 39]), where η is a combination of PPN parameters:

η = 4β − γ − 3 − 10
3

ξ − α1 +
2
3
α2 − 2

3
ζ1 − 1

3
ζ2. (11)

The strong-field formalism uses the parameter Δi [40], which for object “i” may be written as:(
mgrav

minertial

)
i

= 1 + Δi

= 1 + η

(
Egrav

mc2

)
i

+ η′
(

Egrav

mc2

)2

i

+ . . . . (12)

Pulsar–white dwarf systems constrain the difference Δnet = Δpulsar − Δcompanion [40]. If the SEP is violated,
the equations of motion for such a system will contain an extra acceleration Δnetg, where g is the gravitational
acceleration due to the Galaxy. This term will influence the evolution of the orbit of the system. For low-eccentricity
orbits, the largest effect will be to force the eccentricity toward alignment with the projection of g onto the orbital
plane of the system. Therefore the time evolution of the eccentricity vector will not only depend on the usual GR-
predicted relativistic advance of periastron (ω̇) but will also include a constant term. The time-dependent eccentricity
vector may be written as [40]:

e(t) = eF + eR(t), (13)
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where eR(t) is the ω̇-induced rotating eccentricity vector, and eF is the forced component. In terms of Δnet, the
magnitude of eF is [40, 41]:

|eF | =
3
2

Δnetg⊥
ω̇a(2π/Pb)

, (14)

where g⊥ is the projection of the gravitational field onto the orbital plane, and a = x/(sin i) is the semi-major axis
of the orbit. For small-eccentricity systems, this reduces to:

|eF | =
1
2

Δnetg⊥c2

FGM(2π/Pb)2
, (15)

where M is the total mass of the system, and, in GR, F = 1 and G is Newton’s constant. Here g⊥ is the projection
of the Galactic acceleration vector onto the plane of the orbit, and is given by [40]:

|g⊥| = |g|[1 − (cos i cosλ + sin i sinλ sin(φ − Ω))2]1/2, (16)

where φ is the position angle of the projection of the gravitational acceleration vector g onto the plane of the sky,
and λ is the angle between the line from pulsar to Earth and g. Deriving eF requires knowledge of the Galactic
acceleration at the pulsar position; this can be obtained from potential models of the Galaxy (e.g., [42]).

Pulsars with large values of P 2
b/e are clearly prime candidates to test for non-zero Δnet. However, two age-related

restrictions are also needed [40, 41]. First of all, the pulsar must be sufficiently old that the ω̇-induced rotation of e
has completed many turns and eR(t) can be assumed to be randomly oriented. This requires that the characteristic
age τc � 2π/ω̇ and thus young pulsars cannot be used. Secondly, ω̇ itself must be larger than the rate of Galactic
rotation, so that the projection of g onto the orbit can be assumed to be constant. According to [41], this holds true
for pulsars with orbital periods of less than about 1000 days.

Converting equation 15 to a limit on Δnet requires some statistical arguments to deal with the unknowns in the
problem. Usually, the orbital inclination angle i, the masses m1 and m2, the angle of the Line of Nodes Ω and
the pulsar distance are not very well constrained, although there are some notable exceptions [43, 44]. The most
vexing problem has historically been the issue of how to treat the unknown angle between eF and the “natural”
eccentricity eR. Limits based on “worst-case” cancellation scenarios have been obtained for individual pulsars [40]
and an ensemble of pulsars [41, 45], with [45] attempting to account for selection effects by using a larger set of
pulsars, even those with low values of P 2

b/e. Recently, a new limit has been obtained, again using the full set of
pulsars that likely have similar evolutionary histories, but using a Bayesian analysis to calculate probability density
functions (pdfs) for each pulsar, making simple assumptions about the prior distributions of eR and the angle it
makes to eF, and using whatever geometrical information is available for each pulsar, including, for the first time, the
observed longitude of periastron. This results in a 95% confidence upper limit on |Δ| of 5.6 × 10−3 [46]. Prospects
for improving the limits come from the discovery of new suitable pulsars, and from better-measured or constrained
values of eccentricity and longitude of periastron from long-term timing of the current set of pulsars.

3.2. Preferred-Frame Effects and Non-conservation of Momentum

3.2.1. Limits on α̂1

A non-zero α̂1 implies that the velocity w of a binary pulsar system (relative to a “universal” background reference
frame given by the Cosmic Microwave Background, or CMB) will affect its orbital evolution. In a manner similar to
the effects of a non-zero Δnet, the time evolution of the eccentricity will depend on both ω̇ and a term which tries to
force the semi-major axis of the orbit to align with the projection of the system velocity onto the orbital plane.

The analysis proceeds in a similar fashion to that for Δnet, except that the magnitude of eF is now written as
[47, 48]:

|eF | =
1
12

α̂1

∣∣∣∣m1 − m2

m1 + m2

∣∣∣∣ |w⊥|
[G(m1 + m2)(2π/Pb)]1/3

, (17)
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where w⊥ is the projection of the system velocity onto the orbital plane. The angle λ, used in determining this
projection in a manner similar to that of equation 16, is now the angle between the line of sight to the pulsar and
the absolute velocity of the binary system.

The figure of merit for systems used to test α̂1 is P
1/3
b /e. As for the Δnet test, the systems must be old, so

that τc � 2π/ω̇, and ω̇ must be larger than the rate of Galactic rotation. Examples of suitable systems are
PSR J2317+1439 [48, 49] with a last published value of e < 1.2 × 10−6 in 1996 [50], and PSR J1012+5307, with
e < 8×10−7 [51]. This latter system is especially valuable because observations of its white-dwarf component yield a
radial velocity measurement [52], eliminating the need to find a lower limit on an unknown quantity. The most recent
limit is α̂1 < 1.4× 10−4 [45]. This is comparable in magnitude to the weak-field results from lunar laser ranging, but
incorporates strong field effects as well. In principle, this test should also be updated using the Bayesian method,
but the pulsars with good figures of merit tend to be those with very short orbital periods and possibly different
evolutionary histories, so it is much more difficult to be assured of using a set of pulsars that is truly representative
of the relevant population.

3.2.2. Limits on α̂3

Tests of α̂3 can be derived from both binary and single pulsars, using somewhat different techniques. A non-zero
α̂3, which implies both a violation of local Lorentz invariance and non-conservation of momentum, will cause a
rotating body to experience a self-acceleration aself in a direction orthogonal to both its spin ΩS and its absolute
velocity w [53]:

aself = −1
3
α̂3

Egrav

(m c2)
w × ΩS. (18)

Thus the self-acceleration depends strongly on the compactness of the object.
An ensemble of single (isolated) pulsars can be used to set a limit on α̂3 in the following manner. For any given

pulsar, it is likely that some fraction of the self-acceleration will be directed along the line of sight to the Earth. Such
an acceleration will contribute to the observed period derivative Ṗ via the Doppler effect, by an amount:

Ṗα̂3 =
P

c
n̂ · aself , (19)

where n̂ is a unit vector in the direction from the pulsar to the Earth. One analysis [31] assumes random orientations
of both the pulsar spin axes and velocities, and finds that, on average, |Ṗα̂3 | � 5×10−5|α̂3|, independent of the pulse
period. The sign of the α̂3 contribution to Ṗ , however, may be positive or negative for any individual pulsar, thus
if there were a large contribution on average, one would expect to observe pulsars with both positive and negative
total period derivatives. Young pulsars in the field of the Galaxy (pulsars in globular clusters suffer from unknown
accelerations from the cluster gravitational potential and do not count toward this analysis) all show positive period
derivatives, typically around 10−14s/s. Thus the maximum possible contribution from α̂3 must also be considered to
be of this size, and the limit is given by |α̂3| < 2 × 10−10 [31].

This test can also be applied to a set of millisecond pulsars [54]; these have much smaller period derivatives, on the
order of 10−20s/s. Here it is also necessary to account for the “Shklovskii effect” [55] in which a similar Doppler-shift
addition to the period derivative results from the transverse motion of the pulsar on the sky:

Ṗpm = Pμ2 d

c
(20)

where μ is the proper motion of the pulsar and d is the distance between the Earth and the pulsar. The distance is
usually poorly determined, with uncertainties of typically 30% resulting from models of the dispersive free electron
density in the Galaxy [56, 57]. Nevertheless, once this correction (which is always positive) is applied to the observed
period derivatives for isolated millisecond pulsars, a limit on |α̂3| on the order of 10−15 results [54, 58].

In the case of a binary pulsar–white-dwarf system, both bodies experience a self-acceleration. The most important
effect is a coupling of the spins to the absolute motion of the center of mass [58]. Both the compactness and the
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spin of the pulsar will completely dominate those of the white dwarf, making the net acceleration of the two bodies
effectively:

aself =
1
6
α̂3cpw × ΩSp, (21)

where cp and ΩSp denote the compactness and spin angular frequency of the pulsar, respectively, and w is the velocity
of the system. For evolutionary reasons (e.g., [15]), the spin axis of the pulsar may be assumed to be aligned with
the orbital angular momentum of the system, hence the net effect of the acceleration will be to induce a polarization
of the eccentricity vector within the orbital plane. The forced eccentricity term may be written as:

|eF | = α̂3
cp|w|
24π

P 2
b

P

c2

G(m1 + m2)
sin β (22)

where β is the (unknown) angle between w and ΩSp, and P is, as usual, the spin period of the pulsar: P = 2π/ΩSp.
The figure of merit for systems used to test |α̂3| is P 2

b/(eP ). The additional requirements of τc � 2π/ω̇ and ω̇

being larger than the rate of Galactic rotation also hold, so the same pulsars should be used in the Bayesian analysis
as for |Δnet|. The 95% confidence limit derived in this manner is |α̂3| < 4 × 10−20 [46].

3.3. Strong Equivalence Principle: Dipolar Gravitational Radiation

General Relativity predicts gravitational radiation from the time-varying mass quadrupole of a binary pulsar
system. The spectacular confirmation of this prediction will be discussed in section 4 below. GR does not, however,
predict dipolar gravitational radiation, though many theories that violate the SEP do. In these theories, dipolar
gravitational radiation results from the difference in gravitational binding energy of the two components of a binary.
For this reason, neutron star–white dwarf binaries are the ideal laboratories to test the strength of such dipolar
emission. The expected rate of change of the period of a circular orbit due to dipolar emission can be written as
[31, 59]:

Ṗb Dipole = −4π2G∗
c3 Pb

m1m2

m1 + m2
(αc1 − αc2)

2, (23)

where G∗ = G in GR, and αci is the coupling strength of body “i” to a scalar gravitational field [59]. (Similar
expressions can be derived when casting Ṗb Dipole in terms of the parameters of specific tensor-scalar theories, such
as Brans-Dicke theory [60]. Equation 23, however, tests a more general class of theories.) The best test systems here
are pulsar–white dwarf binaries with short orbital periods, where αc1 � αc2 so that a strong limit can be set on the
coupling of the pulsar itself. The best test in a recycled-pulsar system comes from PSR J0751+1807, which sets a
95% confidence limit of (αc1 − αc2)2 < 7 × 10−5 [61]. It should be noted that this limit depends on the unknown
equation of state of the neutron stars.

The young-pulsar–white-dwarf system PSR J1141−6545 [62] is eccentric and therefore expected to emit large
amounts of quadrupolar gravitational radiation. The resulting orbital period derivative has recently been measured
[63, 64] and found to be in good agreement with the predictions of GR, thus this system can also be used to exclude
dipolar radiation [65] and to set very strong limits on tensor-scalar theories [66].

Limits may also be derived from double-neutron-star systems (e.g., [67, 68]), although here the difference in the
coupling constants is small and so the expected amount of dipolar radiation is also small compared to the quadrupole
emission. However, certain alternative gravitational theories in which the quadrupolar radiation predicts a positive
orbital period derivative independently of the strength of the dipolar term (e.g., [69–71]) are ruled out by the observed
decreasing orbital period in these systems [72].

3.4. Preferred-location Effects: Variation of Newton’s Constant

Theories that violate the SEP by allowing for preferred locations (in time as well as space) may permit Newton’s
constant, G, to vary. In general, variations in G are expected to occur on the timescale of the age of the Universe,
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such that Ġ/G ∼ H0 ∼ 0.7 × 10−10 yr−1, where H0 is the Hubble constant. Three different pulsar-derived tests
can be applied to these predictions, as a SEP-violating time-variable G would be expected to alter the properties of
neutron stars and white dwarfs, and to affect binary orbits.

By affecting the gravitational binding of neutron stars, a non-zero Ġ would reasonably be expected to alter the
moment of inertia of the star and hence change its spin on the same timescale [73]. This can be written [74]:(

Ṗ

P

)
Ġ

=
(

∂ ln I

∂ ln G

)
N

Ġ

G
, (24)

where I is the moment of inertia of the neutron star, about 1045 g cm2, and N is the (conserved) total number of
baryons in the star. If this represents the only contribution to the observed Ṗ of PSR B0655+64, in a manner
reminiscent of the test of α̂3 described above, the upper limit is |Ġ/G| ≤ (2.2 − 5.5) × 10−11 yr−1, depending on
the stiffness of the neutron star equation of state [74]. Similar reasoning can be applied to PSR J2019+2425 [75]
which has a characteristic age of 27 Gyr once the “Shklovskii” correction is applied [76]. Again depending on the
equation of state, the upper limits from this pulsar are |Ġ/G| ≤ (1.4 − 3.2) × 10−11 yr−1 [77]. These values are
similar to those obtained by solar-system experiments such as radar ranging to the Viking Lander on Mars (e.g.,
[78, 79]). Several other millisecond pulsars, once “Shklovskii” and Galactic-acceleration corrections are taken into
account, have similarly large characteristic ages (e.g. [50, 80]).

In a binary system, a varying G will affect the individual stars and the total mass and angular momentum of the
binary system, causing an orbital period derivative that may be written as [81, 82]:(

Ṗb

Pb

)
Ġ

= −
[
2 −

(
m1c1 + m2c2

m1 + m2

)
− 3

2

(
m1c2 + m2c1

m1 + m2

)]
Ġ

G
. (25)

The best limits again come from neutron-star–white-dwarf systems. In particular, PSR J1713+0747 yields an upper
limit of |Ṗb/Pb|Ġ ≤ 3.2 × 10−12 yr−1 [44, 61], far more stringent than any other pulsar test and comparable to the
best Ġ/G tests available from lunar laser ranging [83].

3.4.1. Changes in the Chandrasekhar Mass

The Chandrasekhar mass, MCH, is the maximum mass possible for a white dwarf supported against gravitational
collapse by electron degeneracy pressure [84]. Its value — about 1.4 M� — depends on Newton’s constant: MCH ∼
(h̄ c/G)3/2/m2

N, where h̄ is Planck’s constant and mN is the neutron mass. Under the assumption that MCH sets
the typical neutron star mass, one may check for any changes in the average neutron star mass over the lifetime of
the Universe. The ages of double-neutron-star systems range from less than 1 Gyr for systems in the field of the
Galaxy to 12 or 13 Gyr for those in globular clusters. A Bayesian analysis of the systems known in 1996 provides
a limit of Ġ/G = (−0.6 ± 4.2) × 10−12 yr−1 at the 95% confidence level [85]. With the recent profusion of new
double-neutron-star binaries and several globular-cluster binaries that may soon yield precise mass measurements
(e.g., [86]), an update of this test should prove interesting in the near future.

4. TESTS OF GR — STRONG-FIELD GRAVITY

The best-known uses of pulsars for testing the predictions of gravitational theories are those in which the predicted
strong-field effects are compared directly against observations. As essentially point-like objects in strong gravitational
fields, neutron stars in binary systems provide extraordinarily clean tests of these predictions.

In any given theory of gravity, the post-Keplerian (PK) parameters can be written as functions of the pulsar
and companion star masses and the Keplerian parameters. As the two stellar masses are the only unknowns in
the description of the orbit, it follows that measurement of any two PK parameters will yield the two masses, and
that measurement of three or more PK parameters will over-determine the problem and allow for self-consistency
checks. It is this test for internal consistency among the PK parameters that forms the basis of the classic tests
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of strong-field gravity. It should be noted that the basic Keplerian orbital parameters are well-measured and can
effectively be treated as constants here.

In general relativity, the equations describing the PK parameters in terms of the stellar masses are (see [27–29]):

ω̇ = 3
(

Pb

2π

)−5/3

(T�M)2/3 (1 − e2)−1 , (26)

γ = e

(
Pb

2π

)1/3

T
2/3
� M−4/3 m2 (m1 + 2m2) , (27)

Ṗb = − 192π

5

(
Pb

2π

)−5/3(
1 +

73
24

e2 +
37
96

e4

)
(1 − e2)−7/2 T

5/3
� m1 m2 M−1/3 , (28)

r = T� m2 , (29)

s = x

(
Pb

2π

)−2/3

T
−1/3
� M2/3 m−1

2 . (30)

where s ≡ sin i, M = m1 + m2 and T� ≡ GM�/c3 = 4.925490947 μs. Other theories of gravity, such as those with
one or more scalar parameters in addition to a tensor component, will have somewhat different mass dependencies
for these parameters.

A traditional method of comparing the observed results to the predictions of GR is through use of a “mass-mass”
diagram. As an example, a recent mass-mass diagram for PSR B1534+12 shown in Figure 1. This presents the
68% confidence regions for parameters measured using the theory-independent “DD” formalism, which makes no
assumptions about the validity of any gravitational theory. If these curves intersect in a common region which
includes the mass predictions based on GR, then the parameters may be said to agree with GR. (Note that the two
neutron-star masses are then also well determined, up to an unmeasurable Doppler-shift correction [27].) These plots
were pioneered for the original DNS (indeed the original binary pulsar) PSR B1913+16 [87, 88]. That 7.75-hour-orbit
system, which brought its discoverers Hulse and Taylor the 1993 Nobel Prize in Physics, shows an excellent agreement
with GR based on the measured PK parameters ω̇, γ and Ṗb [89]. The slightly less eccentric system PSR B1534+12
allows detection of Shapiro delay in addition to the ω̇, Ṗb and γ parameters measured for B1913+16, permitting
an ω̇–γ–s combination which tests only the quasi-static regime of GR, an important complement to the “mixed”
B1913+16 test [90]. The offset of Ṗb for B1534+12 from its expected GR value can be attributed to a poorly known
necessary kinematic correction due to the relative acceleration of the pulsar-system center-of-mass and Solar System
Barycenter reference frames [91]. The crucial unknown quantity is the distance to the pulsar. Under the assumption
that GR is correct, the distance can be derived to be 1.04 ± 0.04 kpc [7].

The recently-discovered double pulsar system PSR J0737−3039 [8, 9, 92] is of course of especial interest. In addition
to the five PK parameters measurable as for PSR B1534+12, the existence of two radio pulsars in the system allows
a measurement of the mass ratio R = a1/a2 = m2/m1, where a1 and a2 are the semi-major axes of the two orbits.
This parameter places an entirely new and unique line on the mass-mass diagram for the system (e.g., [92]) and
is moreover the same function of the two masses in all theories of gravity, independent of self-gravitational effects.
Indeed, the combination of R and ω̇ can be used to predict s very precisely in the context of GR, and the measured
value agrees with this prediction to within 0.22% [92]. This system offers exciting potential for the future as well:
because of its 2.4-hour orbit, the strong-field effects are the largest known. The parameter ω̇ will soon be measured
to such precision as to make it likely that higher-order post-Newtonian expansion terms will be needed to describe
it. In particular, it may be possible to measure the the contribution from the spin-orbit coupling of the recycled
“A” pulsar, which would lead directly to a measurement of the moment of inertia of A and hence a tremendously
important constraint on neutron-star equations of state [92, 93].
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Figure 1: Mass-mass diagram for the PSR B1534+12 system. Labeled curves illustrate 68% confidence ranges of the DD

parameters (Stairs et al., unpublished). The filled circle indicates the component masses according to the general-relativistic

solution. The kinematic correction for assumed distance d = 0.7± 0.2 kpc has been subtracted from the observed value of Ṗb;

the uncertainty on this kinematic correction dominates the uncertainty of this curve. A slightly larger distance removes the

small apparent discrepancy between the observed and predicted values of this parameter.

The circular-orbit PSR–WD system J0437−4715 has a fully known orientation due to geometrical effects and the
motions of the pulsar and the Earth [43, 94, 95]. The magnitude and shape of the Shapiro delay signal can be
predicted based on the geometrically derived system inclination and compared to the predictions of GR; this results
in an excellent match [43]. The same argument could be made for the wider-orbit PSR J1713+0747 for which the
same angles have recently been measured [44].

There are several other recently discovered highly relativistic systems. The eccentric young-pulsar–white-dwarf
system PSR J1141−6545 [62] permits measurement of ω̇, Ṗb and γ through timing [63, 64] and sin i through scintil-
lation [96]; all these parameters are in good agreement with GR. A near twin of the Hulse-Taylor pulsar was found
in the Parkes Multibeam survey [97] but does not yet have a long enough timing baseline to provide a test of GR.
Another relativistic system with a young pulsar, PSR J1906+0746 [98], was among the first discoveries of the Arecibo
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L-band Feed Array (ALFA) pulsar survey [99]; it is not yet known whether its companion is a white dwarf or a second
neutron star. All of these systems promise to put independent constraints on deviations from GR. It will also be
fruitful to combine the measurements from all systems to produce global constraints on theories (e.g., [66, 100]).

4.1. Spin-Orbit Coupling and Geodetic Precession

The evolutionary scenarios for double-NS systems (e.g., [101, 102]) predict that, immediately before the second
supernova explosion, the two stellar spin axes should be aligned with the orbital angular momentum of the system.
After the explosion, the recycled pulsar’s spin axis direction should be unchanged, but the orbital angular momentum
vector and most likely the spin axis of the companion will have changed direction. The resulting misalignment between
the recycled pulsar’s spin axis and the orbital angular momentum vector (expected to be roughly 20◦ [103]) will cause
both vectors will precess about the total angular momentum of the system. In practice, the total angular momentum
is completely dominated by the orbital angular momentum. The evolution of the pulsar spin axis S1 can be written
as [4, 5]:

dS1

dt
= Ωspin

1 × S1, (31)

where the vector Ωspin
1 is aligned with the orbital angular momentum. Its magnitude is given by:

Ωspin
1 =

1
2

(
Pb

2π

)−5/3
m2(4m1 + 3m2)

(1 − e2)(m1 + m2)4/3
T

2/3
� , (32)

where again T� ≡ GM�/c3 = 4.925490947 μs. The predicted precession periods are roughly 700 years for
PSR B1534+12, 300 years for PSR B1913+16, 270 years for PSR J1141−6545 and only 70–75 years for
PSRs J0737−3039A and B. The primary manifestation of this precession is expected to be a slow change in the
shape of the pulse profile, as different regions of the pulse emission beam move into the observable slice.

Profile shape changes have been known in the Hulse-Taylor binary for 20 years [104], with a clear change in the
relative heights of the two profile peaks over several years. While the obvious interpretation of these changes was
taken to be geodetic precession, a quantitative test of the precession rate was impossible because the intrinsic pulse
beam shape was unknown. Thus the major use of the geodetic precession in this system has in fact been in beam
modeling. Interestingly, although a simple picture of a cone-shaped beam might lead to an expectation of a change
in the separation of the peaks with time, no evidence for this was seen until the late 1990s, at the Effelsberg 100-m
telescope [105], by which point the two peaks had begun to move closer together at a rather fast rate. This changing
peak separation, along with the predicted precession rate and a simple conal model of the pulse beam, yields a
spin-orbit misalignment angle of about 22◦ and a prediction that the pulsar will disappear from view in about 2025
[105], in good agreement with an earlier prediction [106] made before the peak separation began to change. Recent
results from Arecibo [107] confirm the gist of these results, with a misalignment angle of about 21◦, but preferring
an hourglass-shaped beam. If the rate of precession is allowed to vary as another free parameter in the pulse-shape
fit, a value of 1.2◦ ± 0.2◦ is derived [108, 109]. This is consistent with the GR prediction but still depends on the
beam-shape model and is therefore not a true test of the precession rate.

The situation is different for PSR B1534+12, which has stronger signal-to-noise in general and which has a polar-
ization position angle swing that follows the rotating vector model [111]. In fact, for this pulsar, long-term changes
are apparent in both the profile shape and in the polarization properties. The polarization changes show that the
impact parameter of the line of sight to the pulsar’s magnetic pole is increasing in magnitude at a rate of about
0.2◦/yr (Figure 2). Under the assumption that this is due to geodetic precession of the spin axis, these changes
provide an immediate insight into the 3-dimensional orientation of the pulsar’s spin axis. Furthermore, the long-term
evolution of the pulse profile shape can be modeled linearly and compared in magnitude changes to smaller but similar
variations due to special-relativistic aberration on orbital timescales. Thus the unknown intrinsic pulse beam shape
can be “calibrated out” and the precession rate measured [112]. While the rate measurement is still low-precision,
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Figure 2: Top panel: the position angle of linear polarization in 2001 June, with best fit rotating vector model (RVM) overlaid

in red. Middle panel: total intensity (black) and linear polarization (red) profiles in 2001 June. This profile is very similar in

shape to the “reference” profile. Inset: evolution of impact angle β with time. Bottom panel: “Difference” profile, representing

essentially the time-derivative of the observed profile. Adapted from [110]

it is in excellent agreement with the predictions of GR. Besides providing the first beam-model-independent test of
the precession rate in strong-field gravity, these observations also yield the full 3-dimensional system geometry for
B1534+12 and permit stringent constraints on the mass of the progenitor to the second NS as well as the asymmetric
kick during the second supernova explosion [113, 114].

Geodetic precession has also been observed in the pulsar–white-dwarf system PSR J1141−6545 [116] and there is
some evidence for the effect in the newly discovered PSR J1906+0746 [98]. Intriguingly, profile shape changes have
been seen in only the younger of the J0737−3039 pulsars [117, 118].
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5. Conclusions

The next several years will be very exciting times for pulsar tests of GR, with better timing leading to superior
equivalence-principle violation limits, potential for improving the precession rate test in PSR B1534+12 using wider-
bandwidth observations, and the prospect of qualitatively new as well as unprecedentedly precise tests resulting from
the double-pulsar system.

In the longer term, large-scale pulsar surveys, such as those now underway at Arecibo [99] or focusing on globular
clusters (e.g., [86]), are likely to yield exciting new relativistic or exotic systems, potentially including the “holy grail”
of a pulsar–black-hole binary. Such a system (if these in fact exist in reasonable numbers) is quite likely to be found
by the Square Kilometre Array, which will be sensitive to pulsars clear through our Galaxy and into neighboring
galaxies such as M31 [115]. The next decade or two promise to be exciting times for pulsar searchers and for those
looking to set ever-more-stringent limits on deviations from General Relativity.
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[34] T. Damour, G. Esposito-Farèse, Class. Quant Grav. 9, 2093 (1992).
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