Brief Overview

• SDSS Basics:
 - 5 band photometric survey (u', g', r', i', z'), running from near IR to near UV
 - Follow-up spectroscopy (640 fibers fed to 2 spectrographs)
 - Data Release 4: 6670 deg2 & 180 million objects in photometric survey; 4783 deg2 & 673,000 galaxies in spectroscopic survey

• 3 Projects:
 - Baryon Oscillations with Luminous Red Galaxies (Eisenstein et al., astro-ph/0501171)
 - Cosmic Magnification with Photometric Galaxies & Quasars (RS et al, astro-ph/0504510)
 - Cluster Mass Profiles from Weak Lensing (Sheldon & Johnston et al., astro-ph/05?????)
Brief Overview

• SDSS Basics:
 ⋆ 5 band photometric survey \((u', g', r', i', z')\), running from near IR to near UV
 ⋆ Follow-up spectroscopy (640 fibers fed to 2 spectrographs)
 ⋆ Data Release 4: 6670 deg\(^2\) & 180 million objects in photometric survey; 4783 deg\(^2\) & 673,000 galaxies in spectroscopic survey

• 3 Projects:
 ⋆ Baryon Oscillations with Luminous Red Galaxies (Eisenstein et al. astro-ph/0501171) \(100 \, h^{-1}\text{Mpc}\)
 ⋆ Cosmic Magnification with Photometric Galaxies & Quasars (RS et al. astro-ph/0504510) \(0.06 - 10 \, h^{-1}\text{Mpc}\)
 ⋆ Cluster Mass Profiles from Weak Lensing (Sheldon & Johnston et al. astro-ph/05?????) \(0.01 - 1 \, h^{-1}\text{Mpc}\)
Baryon Oscillations
Baryon Oscillations

- **Magic Time:** After matter-radiation equality, but before recombination $(1000 < z < 10,000)$

- Dark matter: dominates expansion, falling into gravitational potentials set up during inflation

- Photons: Oscillating in dark matter potentials

- Baryons: Still coupled to photons
Baryon Oscillations

- Coupled baryons act as a drag on photon fluid (extra mass on a spring)
- Compression phase stronger, rarefaction weaker
- After recombination, oscillations imprinted on matter power spectrum
- Strength depends on Ω_b/Ω_M
- Physical ruler at multiple redshifts
Baryon Oscillations

- Coupled baryons act as a drag on photon fluid (extra mass on a spring)
- Compression phase stronger, rarefaction weaker
- After recombination, oscillations imprinted on matter power spectrum
- Strength depends on Ω_b/Ω_M
- Physical ruler at multiple redshifts
Baryon Oscillations

- Coupled baryons act as a drag on photon fluid (extra mass on a spring)
- Compression phase stronger, rarefaction weaker
- After recombination, oscillations imprinted on matter power spectrum
- Strength depends on Ω_b / Ω_M
- Physical ruler at multiple redshifts
Baryon Oscillations

- Coupled baryons act as a drag on photon fluid (extra mass on a spring)
- Compression phase stronger, rarefaction weaker
- After recombination, oscillations imprinted on matter power spectrum
- Strength depends on Ω_b/Ω_M
- Physical ruler at multiple redshifts
Baryon Oscillations

- Coupled baryons act as a drag on photon fluid (extra mass on a spring)

- Compression phase stronger, rarefaction weaker

- After recombination, oscillations imprinted on matter power spectrum

- Strength depends on Ω_b/Ω_M

- Physical ruler at multiple redshifts

Wayne Hu
Baryon Oscillations

- Coupled baryons act as a drag on photon fluid (extra mass on a spring)

- Compression phase stronger, rarefaction weaker

- After recombination, oscillations imprinted on matter power spectrum

- Strength depends on $\frac{\Omega_b}{\Omega_M}$

- Physical ruler at multiple redshifts

White (astro-ph/0507307)
Finding the Oscillations

- Large physical scale requires wide, deep spectroscopic survey

- Choose Luminous Red Galaxy sample

- Volume-limited to $z \sim 0.4$

- Redshift-space correlation function; peaks collapse to single feature

Eisenstein et al. (astro-ph/0501171)
Finding the Oscillations

- Large physical scale requires wide, deep spectroscopic survey
- Choose Luminous Red Galaxy sample
- Volume-limited to $z \sim 0.4$
- Redshift-space correlation function; peaks collapse to single feature

Eisenstein et al. (astro-ph/0501171)
Finding the Oscillations

- Large physical scale requires wide, deep spectroscopic survey

- Choose Luminous Red Galaxy sample

- Volume-limited to \(z \sim 0.4 \)

- Redshift-space correlation function; peaks collapse to single feature

Eisenstein et al. (astro-ph/0501171)
Improved Cosmological Constraints

- Including baryon peak improves constraints on w & $\Omega_m h^2$ by factor of 2
- No extra information on spectral index n
- Removing flat prior: $\Omega_K = -0.010 \pm 0.009$ vs -0.045 ± 0.032 without LRGs

<table>
<thead>
<tr>
<th>Parameter</th>
<th>WMAP + SDSS Main</th>
<th>+ LRG</th>
</tr>
</thead>
<tbody>
<tr>
<td>w</td>
<td>-0.92 ± 0.30</td>
<td>-0.80 ± 0.18</td>
</tr>
<tr>
<td>$\Omega_M h^2$</td>
<td>0.145 ± 0.014</td>
<td>0.135 ± 0.008</td>
</tr>
<tr>
<td>Ω_m</td>
<td>0.329 ± 0.074</td>
<td>0.326 ± 0.037</td>
</tr>
<tr>
<td>h</td>
<td>0.679 ± 0.100</td>
<td>0.648 ± 0.045</td>
</tr>
<tr>
<td>n</td>
<td>0.984 ± 0.033</td>
<td>0.98 ± 0.035</td>
</tr>
</tbody>
</table>
Cosmic Magnification
Two Effects of Gravitational Lensing

- Weak lensing of background sources introduces **shear** and **magnification**
Two Effects of Gravitational Lensing

- Shear distorts source image shapes (curl-free vector field)
- Galaxy-galaxy lensing & cosmic shear
Two Effects of Gravitational Lensing

- Magnification (μ) increases the angular size of source images.
- Increases flux (amplification) but decreases density on the sky (dilution).
Quantifying Cosmic Magnification I

Start with flux-limited background sample (e.g. QSOs):

\[n_0(f) \, df = a_0 \, f^{-s(f)} \, df \] \hspace{1cm} (1)

Lens images through foreground structure (e.g. local galaxies) with magnification \(\mu \)

\[n(f) \, df = \frac{1}{\mu} \, n_0 \left(\frac{f}{\mu} \right) \, \frac{df}{\mu} \]

\[= \mu^{s(f)-2} \, n_0(f) \, df \] \hspace{1cm} (2)

Converting this to magnitude space, we get

\[N(m) \, dm = \mu^{2.5 \, s(m)-1} \, N_0(m) \, dm \]

\[= \mu^{\alpha(m)-1} \, N_0(m) \, dm \] \hspace{1cm} (3)
Quantifying Cosmic Magnification II

• If we are in the weak lensing regime ($\mu \approx 1$),

$$w_{GQ}(\theta) = 12\pi^2 \Omega_M (\alpha(m) - 1) \int d\chi \, dk \, k \, K(k, \theta, \chi) \, P_{gm}(k, \chi)$$

$$= (\alpha(m) - 1) \times w_0(\theta),$$

where K depends on the foreground and background redshift distributions and $P_{gm}(k)$ is the galaxy-dark matter power spectrum.

• For $\alpha(m) > 1$, increasing amplification outweighs the dilution effect, yielding a positive cross-correlation. For $\alpha(m) < 1$, dilution wins and the cross-correlation is negative.

• Lensing signal amplitude is much smaller than intrinsic clustering, so redshift segregation is vital.
Controversy

- First lensing motivated measurements in late 1980s and early 1990s
 - Lick, IRAS & APM galaxies, Abell & Zwicky clusters
 - optical UVX and radio selected QSOs

- More recently, Guimaraes, Myers & Shanks (2003) used 2dF QSOs + APM & SDSS galaxy groups

- Consistently detect signal $\sim 10 \times$ the expected lensing effect
The Four Horsemen

- Photometric Calibration
 - Small amplification effect requires excellent photometry
 - Photographic plates not up to the challenge

- Uniform Selection Function
 - Photographic plates have variable depth of field
 - Spectroscopic surveys require detailed selection function

- Redshift Overlap
 - Physical clustering dominates lensing signal
 - Require either spectroscopy or photometric redshifts for each object

- Object Density
 - Poisson errors dominate
 - When object density is low, only systematic signal is detected
The Data

- SDSS DR3 photometric data
 - 5000 square degrees (1/8 total sky)
 - North Galactic Cap & 3 South Galactic Stripes
- Remove areas with poor seeing (> 1″.4) and high Galactic extinction. Also block out regions around bright ($r' < 16$) galaxies and saturated stars ⇒ 3800 square degrees
- 13 million galaxies with $17 < r' < 21$
 - Mean redshift $z \sim 0.3$
 - Maximum redshift $z \sim 0.75$
- 195,000 photometrically selected QSOs with $17 < g' < 21$. Use photometric redshifts to select $1 < z < 2.2$
Photometric QSO Selection

- Traditional QSO selection involves cuts in 2-D projections

- Kernel Density Estimation (KDE) uses full 4-D color space
 - 2 training sets: QSOs & stars
 - compute distance in color space to assign new objects

- SDSS spectroscopic selection
 85% efficient for $i' < 19$

- KDE selection $> 95\%$ efficient for $g' < 21 \Rightarrow 10\times$ density

Richards et al. (2004)
QSO Photometric Redshifts

- QSO Spectrum: Power-law + broad emission lines
- Photometric redshifts driven by redshifting of emission lines through SDSS filters
- Calculate probability of photo-z as a function of $z \Rightarrow$ upper and lower redshift bounds and probability within bounds
- For $1 < z < 2.2$, mean probability ~ 0.85

Weinstein et al. (2004)
QSO Photometric Redshifts

- QSO Spectrum: Power-law + broad emission lines
- Photometric redshifts driven by redshifting of emission lines through SDSS filters
- Calculate probability of photo-z as a function of $z \Rightarrow$ upper and lower redshift bounds and probability within bounds
- For $1 < z < 2.2$, mean probability ~ 0.85
Measurement in g'

- Select 5 magnitude bins in g':
 $17 < g' < 19$, $19 < g' < 19.5$,
 $19.5 < g' < 20$, $20 < g' < 20.5$,
 $20.5 < g' < 21$

- Calculate $\langle \alpha - 1 \rangle$ in each bin:

$$\langle \alpha - 1 \rangle = \frac{\int N(m)(\alpha(m) - 1)}{\int N(m)} \quad (5)$$

- Expect to see positive correlation for $g' < 19.5$ and negative correlation for $g' > 20$
Measurement in g'

- Select 5 magnitude bins in g':

 17 < g' < 19, 19 < g' < 19.5,
 19.5 < g' < 20, 20 < g' < 20.5,
 20.5 < g' < 21

- Calculate $\langle \alpha - 1 \rangle$ in each bin:

\[
\langle \alpha - 1 \rangle = \frac{\int N(m)(\alpha(m) - 1)}{\int N(m)} \quad (6)
\]

- Expect to see positive correlation for $g' < 19.5$ and negative correlation for $g' > 20$
Optimal Signal

- Magnitude bin measurements verify amplitude of expected signal and variation with $\langle \alpha - 1 \rangle$

- $\langle \alpha - 1 \rangle$ for full QSO sample very close to zero

- To extract full lensing significance, use second moment:
 - Re-calculate estimator weighting each QSO by $\alpha(m) - 1$
 - Expected signal:
 \[
 w_{GQ, O}(\theta) = \langle (\alpha - 1)^2 \rangle \times w_0(\theta) \tag{7}
 \]

- Instead of canceling, positive and negative correlations add coherently
Optimal g'

- 105,000 QSOs
- 8σ detection of lensing against null
- Excellent match to expected signal
- For $z \sim 0.3$, detecting lensing on scales from $60 \, h^{-1} \, \text{kpc}$ to $10 \, h^{-1} \, \text{Mpc}$
A Word of Warning

Cluster Lensing

The following is still preliminary work. These plots should be taken as such.
Cluster Lensing
Cluster Lensing

- Measure tangential shear relative to cluster center
- Average shear is proportional to enclosed projected mass gradient ($\Delta \Sigma$)
Cluster Finding

- **MaxBCG** Method: Brightest Cluster Galaxies tend to have same color and passive evolution

- Find galaxies with BCG colors and look for nearby galaxies with same color and fainter magnitude

- Photometric redshifts: $\Delta z \sim 0.01$

- Current data set: 600,000 “clusters”; 10,000 w/ $N_{gal} \geq 10$
Cluster Finding

- **MaxBCG** Method: Brightest Cluster Galaxies tend to have same color and passive evolution

- Find galaxies with BCG colors and look for nearby galaxies with same color and fainter magnitude

- Photometric redshifts: $\Delta z \sim 0.01$

- Current data set: 600,000 “clusters”; 10,000 w/ $N_{gal} \geq 10$

Jim Annis
Cluster Finding

- **MaxBCG Method**: Brightest Cluster Galaxies tend to have same color and passive evolution
- Find galaxies with BCG colors and look for nearby galaxies with same color and fainter magnitude
- Photometric redshifts: $\Delta z \sim 0.01$
- Current data set: 600,000 “clusters”; 10,000 w/ $N_{gal} \geq 10$
Expectations from Simulations

Navarro, Frenk, & White (1997)
Expectations from Simulations

Navarro, Frenk, & White (1997)
Results

Sheldon & Johnston
Mass Profile

\[M_{\text{vir}} = 32.7 \pm 3 \times 10^{2} \, h^{-1} M_{\odot} \]
\[R_{\text{vir}} = 0.61 \pm 0.02 \, h^{-1} \text{Mpc} \]
Halo Occupation Distribution

Sheldon & Johnston
Halo Occupation Distribution

Kravtsov (2004)

Sheldon & Johnston
Summary

SDSS

- Uniform 5 color photometry over 8000 deg2, 200 million objects
- >750,000 galaxy spectra covering >5000 deg2
- SDSS II will add a few hundred deg2 & fill in spectroscopy

Baryon Oscillations

- Large volume from LRGs ⇒ high S/N detection of baryon oscillation at 100 h^{-1} Mpc
- Establishes standard ruler for future deep spectroscopic surveys
Summary

Cosmic Magnification

- Uniform photometric QSO data set yields an 8σ detection of magnification & matches predicted amplitude and angular shape
- Magnification with galaxies or QSOs will complement future cosmic shear surveys

Cluster Lensing

- Mean cluster mass profile matches NFW halo profile as predicted from simulations
- Halo Occupation Distribution from lensing matches semi-analytic predictions