Unifying the Forces (and Particles!)

Keith R. Dienes
(Univ. of Arizona)

[SLAC Summer Institute Lectures]
[August 2005]

Outline:

1. SM review: forces, particles, Higgs mechanism
2. Quick review of group theory:
 - representations, generators, roots & weights, etc.
3. The basic GUT idea
4. Choices of GUT groups & their relations
5. SM embedding into SU(5)
6. Gauge coupling unification & the GUT scale
7. Breaking the GUT group - hierarchy problem
8. Other issues and experimental signatures:
 - fermion masses
 - proton decay, B-L conservation
 - cosmological implications
 - extensions: SUSY, SO(10) & neutrinos, ...
9. Modern topics:
 - unification with gravity
 - embedding into string theory
 - GUTs in higher dimensions, TeV-scale GUTs
 - orbifold GUTs
SM review

Standard Model is the theory governing all fundamental particles and interactions for \(l \gtrsim 10^{-18} \text{ m} \iff E \lesssim 10^2 \text{ GeV} \).

It is a theory of FORCES & the PARTICLES on which they act. ("verbs") ("nouns")

We shall review only the grossest, "architectural" structure of the SM.

<table>
<thead>
<tr>
<th>FORCES (verbs)</th>
<th>"electroweak"</th>
</tr>
</thead>
<tbody>
<tr>
<td>strong (\otimes)</td>
<td>weak (\otimes)</td>
</tr>
<tr>
<td>(SU(3)_c) & (SU(2)_W) & (U(1)_Y)</td>
<td></td>
</tr>
<tr>
<td>(spin-1) (bosons):</td>
<td>8 gluons</td>
</tr>
<tr>
<td>(d_3 \approx \frac{1}{8.5}) & (d_2 \approx \frac{1}{29.6}) & (d_Y \approx \frac{1}{18.3})</td>
<td></td>
</tr>
</tbody>
</table>

[measured at \(Z \)-scale \(\approx 90 \text{ GeV} \)]
Particle content (nouns)

- Particles are "Chiral Fermions":
 - **Fermions**: Dirac bispinor ψ
 - **Chiral**: definite handedness:
 $$\psi_L = \frac{1}{2} (1 - \gamma_5) \psi \quad \text{left}$$
 $$\psi_R = \frac{1}{2} (1 + \gamma_5) \psi \quad \text{right}$$
 Each is only two components.

Particle content of SM consists of three generations of chiral fermions:

LEFT: Electroweak doublet:

$$
\begin{align*}
(Y_d) & (s) & (t) \\
(Y_e) & (\nu_e) & (\nu_e)
\end{align*}
$$
Quarks: Each comes in three colors (u, d, s, b)
Leptons: No colors

RIGHT: All components are singlets:

$$
\begin{align*}
(u) & (c) & (t) \\
(d) & (s) & (b)
\end{align*}
$$
Quarks: Each in three colors
Leptons: No colors

\(\text{not yet discovered! Assume massless!}\)
Let's adopt a very succinct notation to describe the transformation properties of the particles with respect to the SM gauge symmetries:

[First generation only; others just repeat...]

\[
\text{SU}(3)_C \otimes \text{SU}(2)_W \otimes \text{U}(1)_Y
\]

<table>
<thead>
<tr>
<th>(Q_L = (u)_L)</th>
<th>((3, 2)_{1/3})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(L_L = (\nu)_L)</td>
<td>((1, 2)_{-1})</td>
</tr>
<tr>
<td>(u_R)</td>
<td>((3, 1)_{4/3})</td>
</tr>
<tr>
<td>(d_R)</td>
<td>((3, 1)_{-2/3})</td>
</tr>
<tr>
<td>(e_R)</td>
<td>((1, 1)_{-2})</td>
</tr>
<tr>
<td>(\nu_R)</td>
<td>((1, 1)_{0})</td>
</tr>
</tbody>
</table>

\[\text{Note: } u_R \text{ is still } 3, \text{ not } \bar{3} : \text{ different handedness of the same up quark!}\]
But it's somewhat awkward to deal with some fields listed as L, others R. ... obscures the relations between different representations.

Recall "charge conjugation" operation: (particle \leftrightarrow antiparticle)

$$\Psi^c = i\gamma^2 \Psi^*$$

Then we observe:

$$\left(\Psi_R\right)^c = i\gamma^2 \left[\frac{1}{2} \left(1 + \gamma_5 \right) \Psi \right]^*$$

$$= \frac{i}{2} \gamma^2 \left(1 + \gamma_5 \right) \Psi^*$$

$$= \frac{1}{2} \left(1 - \gamma_5 \right) \left[i\gamma^2 \Psi^* \right]$$

$$= \left(\Psi^c\right)_L$$

\Rightarrow The conjugate of a right-handed component of a fermion is the left-handed component of the conjugate fermion!
Thus, if \(u_p = (3, 1)^{4/3} \)

then \((u_p)^c = (\overline{3}, 1)^{-4/3} = (u_c)^L\)

We can thus drop all "L" subscripts and write all fields in terms of left-handed components:

\[
\begin{align*}
Q : & \quad (3, 2)^{+1/3} \\
L : & \quad (1, 2)^{-1} \\
U^c : & \quad (\overline{3}, 1)^{-4/3} \\
D^c : & \quad (\overline{3}, 4)^{+2/3} \\
e^c : & \quad (1, 2)^{+2} \\
[& \quad \gamma^c : (1, 1)^0. \quad \ldots \text{if it exists!}]
\end{align*}
\]
The SM also has an "adverb" — the Higgs sector.

\[
\begin{align*}
\text{SU}(3)_c \otimes \text{SU}(2)_W \otimes \text{U}(1)_Y \\
\text{Weak} \quad (A^+, A^0) \\
\text{Hypercharge} \quad (B) \\
\downarrow \langle \phi \rangle \text{ Higgs ver} \\
\text{U}(1)_{\text{EM}} \\
(\gamma = \text{photon})
\end{align*}
\]

How does this happen?

Higgs field = complex doublet of spin-0 Lorentz scalar:

\[
\phi = \begin{pmatrix} \phi^+ \\ \phi_0 \end{pmatrix}, \quad Y = 1 \\
(\text{chosen})
\]

Imagining

\[
V(\phi) = -\mu^2 \phi^+ \phi + \lambda (\phi^+ \phi)^2
\]

\[
\Rightarrow \text{Minimum at } v = \sqrt{\frac{\mu^2}{\lambda}} \approx 246 \text{ GeV}
\]

Parametrize Higgs in terms of deviations relative to new vacuum:

\[
\langle \phi \rangle = \exp \left[-i \frac{\xi(x)}{\nu} \frac{\gamma^5}{\gamma} \right] \begin{pmatrix} 0 \\ \nu + \eta(x) \end{pmatrix}
\]
Thus, Higgs degrees of freedom are now

\[\tilde{\xi}(x): (\tilde{\xi}^+, \tilde{\xi}^0) \text{ would-be Goldstone bosons} \]

\[\eta(x): \text{ the physical Higgs} \]

\[\tilde{\xi}^0: \text{ massless} \]

\[\eta: \text{ massive} \]

So how does the Higgs mechanism actually work?
The Higgs Mechanism (schematically...)

\[SU(3)_c \otimes SU(2)_W \otimes U(1)_Y \]

(gluons) \[(A^\pm, A^3) \]

Unaffected \[\Xi^3 \]

\[W^\pm \] massive

\[\begin{align*}
M_{W^\pm}^2 &= \frac{g_2^2 v^2}{4} \approx 83 \text{ GeV} \\
M_{Z^0}^2 &= M_{W^\pm}^2 / \cos^2 \theta \approx 91 \text{ GeV}
\end{align*} \]

where \[\tan \theta_W = \frac{g_Y}{g_2} \]

\[\sin^2 \theta_W = \frac{g_Y^2}{g_Y^2 + g_2^2} = \frac{d_Y}{d_Y + d_2} \approx 0.23 \]

Then \[d_Y^{-1} = \alpha_{EM}^{-1} \cos^2 \theta_W \]

\[d_2^{-1} = \alpha_{EM}^{-1} \sin^2 \theta_W \]

\[\alpha_{EM}^{-1} \approx 127 \]

and we have \[Q_{EM} = T_3 + \frac{Y}{2} \]
That's it!

Well, not really...

1. Yukawa couplings!

\[L \sim y_{dd} \overline{Q}_L \phi d_R + y_{Qu} \overline{Q}_L (i \gamma_2 \phi^*) u_R \]

\[+ y_{Le} \overline{L}_L \phi e_R + y_{eR} \overline{L}_L (i \gamma_2 \phi^*) e_R, \]

Then our fermions gain Dirac masses

\[m_i = |y_i| \langle \phi \rangle \]

\[\Rightarrow m_i = \frac{|y_i| V^-}{\sqrt{2}} \]

only if neutrinos have Dirac masses
(2) **three generations!**

essentially the fermion structure repeats, but with one subtlety

— mixing between generations

Quarks:

\[
\begin{pmatrix}
(u) & (d) \\
(c) & (s) \\
(t) & (b)
\end{pmatrix}
\]

where

\[
\begin{pmatrix}
d' \\
s' \\
b'
\end{pmatrix} = \begin{pmatrix}
\text{Cabibbo} \\
\text{mass eigenstates}
\end{pmatrix} \begin{pmatrix}
d \\
s \\
b
\end{pmatrix}
\]

Leptons:

\[
\begin{pmatrix}
(\nu_e') & (\nu_\mu') & (\nu_\tau') \\
\nu_e & \nu_\mu & \nu_\tau
\end{pmatrix}
\]

where

\[
\begin{pmatrix}
\nu_e' \\
\nu_\mu' \\
\nu_\tau'
\end{pmatrix} = \begin{pmatrix}
3 \times 3 \\
\text{MNS matrix}
\end{pmatrix} \begin{pmatrix}
\nu_e \\
\nu_\mu \\
\nu_\tau
\end{pmatrix}
\]

→ Yukawa couplings are matrices \(Y_{AB} \) in flavor space

... flavor physics!

CP violation, etc...

Very complicated, no deep understanding!
Standard Model Summary

<table>
<thead>
<tr>
<th></th>
<th>$SU(3)_c \otimes SU(2)_W \otimes U(1)_Y$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gauge Bosons</td>
<td></td>
</tr>
<tr>
<td>Spin-1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$\text{gluons}: (8, 1)$</td>
</tr>
<tr>
<td></td>
<td>$A^+ \otimes A^3$: $(4, 3)$</td>
</tr>
<tr>
<td></td>
<td>B: $(1, 1)$</td>
</tr>
<tr>
<td>Matter</td>
<td></td>
</tr>
<tr>
<td>Spin-$\frac{1}{2}$</td>
<td></td>
</tr>
<tr>
<td>All left-handed</td>
<td></td>
</tr>
<tr>
<td>$Q = (ud)$: $(3, 2)^{+ \frac{1}{3}}$</td>
<td></td>
</tr>
<tr>
<td>$L = (\nu e)$: $(4, 2)^{-1}$</td>
<td></td>
</tr>
<tr>
<td>u^c: $(\overline{3}, 1)^{-\frac{4}{3}}$</td>
<td></td>
</tr>
<tr>
<td>d^c: $(\overline{3}, 1)^{\frac{2}{3}}$</td>
<td></td>
</tr>
<tr>
<td>e^c: $(1, 1)^{+2}$</td>
<td></td>
</tr>
<tr>
<td>$[\gamma e^c$: $(1, 1)]$</td>
<td></td>
</tr>
<tr>
<td>ϕ: $(1, 2)^{+1}$</td>
<td></td>
</tr>
<tr>
<td>Ew Higgs</td>
<td></td>
</tr>
<tr>
<td>Spin-0</td>
<td></td>
</tr>
</tbody>
</table>

Note: The table above summarizes the representations of the Standard Model particles under the gauge and weak gauge symmetries.
Question: What sets values of Y?

Note: $U(1)_Y$ is an abelian group \Rightarrow any normalizations are allowed!

For fermion (matter) content:

Since $Q_{EM} = T_3 + \frac{Y}{2}$

and since we have measured Q_{EM} experimentally, relative hypercharge assignments are fixed by experimental observations!

But is there a theoretical reason for these relative values of Y?

i.e., can we predict relations such as

$|\text{proton charge}| = |\text{electron charge}|$

on the basis of a physical principle?
Chiral (ABJ) triangle anomaly cancellation!
Anomalies spoil consistency of theory
at the quantum level — come from diagrams

... where our chiral fermions run in the loops.
Cancellation of each kind of anomaly diagram requires:

1. $\text{Tr}_3 Y = 0$ summed over all colored fermions
2. $\text{Tr}_2 Y = 0$ summed over all fermion doublets
3. $\text{Tr} Y^3 = 0$ summed over all fermions with $Y \neq 0$
4. $\text{Tr} Y = 0$ summed over all fermions

Unique Solution Is The SM Solution (or its rescaling)

\Rightarrow relative Y-values are fixed \Rightarrow Charge Quantization!

but overall normalization still unfixed.
For Higgs field ϕ, situation is different.
Since ϕ not yet discovered, we don’t know its Q_{EM}.

However, assuming the same overall normalization as for the fermions, we still have $Q_{EM} = T_3 + \frac{Y}{2}$.

We then must choose

$$\phi : (1, 2)_{+1}$$

So that

$$\phi = (\phi^+, \phi_0) \leq Q_{EM} = +1$$

$$\phi_0 \leq Q_{EM} = 0$$

Why? Since bottom component ϕ_0 gets very small, i.e., $\langle \phi_0 \rangle = \frac{v}{\sqrt{2}}$,
it must be electrically neutral ($Q_{EM} = 0$) so that EM is the remaining unbroken symmetry!
STANDARD MODEL — Things to remember:

1. lots of seemingly disconnected representations for gauge bosons & particle content

2. three independent gauge couplings \((g_3, g_2, g_4)\)
 - no predictions for \(g_i\)
 - not even predictions for their ratios such as \(\sin^2 \theta_W = g_1^2 / (g_1^2 + g_2^2)\)

3. particle representations are complex
 e.g., \(Q_L = (3, 2, 1) / 3\), but no \((\bar{3}, 2, -1) / 3\)!

4. overall normalization for \(Y\) *unfixed*
 [since U(1)_y abelian]
 even though relative \(Y\)-values are fixed
Higgs mechanism breaks

\[\text{SU}(2)_W \otimes \text{U}(1)_Y \xrightarrow{<\phi> \neq 0} \text{U}(1)_{\text{EM}} \]

where \(\phi^0 \) is EM-neutral.

In general, the subgroup which survives is the subgroup with respect to which the field getting the non-zero VEV is neutral.

\[\sin^2 \theta_W = \frac{g_Y^2}{g_Y^2 + g_2^2} \]

\[M_{(W,Z)} \propto g_Y \]

\[\alpha_{EM}^{-1} \approx 127 \]

\[\alpha_Y^{-1} \approx 98.3 \]

\[\alpha_2^{-1} \approx 29 \]

\(E \leq \nu \) one coupling

\(E > \nu \) two couplings

\(<\phi> \neq 0 \) phase transition
Particle representations treat baryons & leptons separately.

Also, they are not joined by Yukawa couplings [mixed Yukawa couplings would violate gauge invariance!]

\[\Rightarrow \quad \text{In SM,} \]

- Baryon \# (B) conserved
- Lepton \# (L) conserved

Thus, e.g., the lightest baryon (= proton) is stable!

Note: B is actually broken by instanton effects \((\text{small})\)

\[\text{L can be broken by } \gamma \text{ Majorana mass terms (if they exist).} \]
Some group theory

Let's think a bit more explicitly about the groups $\text{SU}(2)$, $\text{SU}(3)$ in the SM.

What do they mean?

Start with $\text{SU}(2) \cong \text{SO}(3)$ "rotation group" angular momentum!

Group has 3 generators:

\[
\begin{align*}
\cdot \quad & J_+ = J_1 + i J_2 \\
\cdot \quad & J_- = J_1 - i J_2 \\
\cdot \quad & J_z = J_3
\end{align*}
\]

with commutation relations

\[
\left[J_i, J_j \right] = i \epsilon_{ijk} J_k \quad \leftrightarrow \quad \left\{ \begin{array}{l}
[J_3, J_\pm] = \pm J_\pm \\
[J_+, J_-] = 2 J_z
\end{array} \right.
\]

\Rightarrow Generators don't commute \Rightarrow group is "non-abelian"

\Rightarrow only one generator can be diagonalized

\Rightarrow choose it to be J_z
Then states can be chosen as eigenstates of J_z:

$J_z |m\rangle = m |m\rangle$

- Can indicate states graphically in terms of m:

 SINGLET REP. $j=0$

 SPINOR REP. $j=1/2$

 VECTOR/ADJOINT $j=1$

 : $j=3/2$

 \[\text{[ALL REPRESENTATIONS ARE REAL]} \]

For each representation j, the dimension of rep $= 2j+1$.

$J^+ |m\rangle \sim |m+1\rangle \implies J^+$ raises m by 1

$J^- |m\rangle \sim |m-1\rangle \implies J^-$ lowers m by 1

$J_z |m\rangle = m |m\rangle \implies J_z$ preserves m, gives location

Actions are graphically represented as:

\[\begin{align*}
 &\xleftarrow{J^-} 1 \quad \xrightarrow{J^+} 1 \\
 \text{Acts on } m
\end{align*} \]
In the actual SM case of $SU(2)_W$,

\[
\begin{align*}
M & \rightarrow T_3 \\
J^\pm & \rightarrow A^\pm \\
J^Z & \rightarrow A^Z
\end{align*}
\]

Thus, the gauge bosons of $SU(2)_W$ have the actions:

\[\begin{array}{c}
A^- \\
A^0 \\
A^+ \\
T_3
\end{array} \]

Moreover, as we saw, all fermion representations in the SM are either singlets or doublets:

\[\begin{array}{c}
\text{e.g.,} \\
\text{e, u, d} \\
\text{d} \\
\text{u} \\
\text{e} \end{array} \]

So gauge bosons act according to these T_3 "charges":

\[\begin{array}{c}
(T_3 = \pm \frac{1}{2}) \\
(A^+) \\
(T_3 = \pm \frac{1}{2}) \\
A^- \end{array} \]
SU(2) SUMMARY

- **one diagonal generator:** $J^2 |m\rangle = m |m\rangle$
- **three generators total (J_+, J_-):**

```
          -1  Jz  1
          -  0  1
          J-  J+  m
```

- **Representations:**
 - **Singlet**
 - $|0\rangle \rightarrow m$
 - **Doublet**
 - $|\pm \sqrt{1}/2\rangle \rightarrow m$
 - **Triplet**
 - $|1, 0, \pm 1\rangle \rightarrow m$
 - **Quartet**
 - $|\pm 3/2, \pm 1/2, \pm 1/2, \pm 3/2\rangle \rightarrow m$
 - **Etc.**

- All reps are real (i.e., same if inverted through origin, $m \rightarrow -m$)
- Generator diagram is same points as triplet representation

 \Rightarrow triplet is "adjoint" representation.
Now consider \(\text{SU}(3) \)

Examples:
- \(\text{SU}(3) \) color \((r, g, b)\) (LOCAL)
- \(\text{SU}(3) \) flavor \((u, d, s)\) (GLOBAL)

Very different physically, but exactly the same algebraically \(\Rightarrow\) We shall use both examples!

\(\text{SU}(3) \): has eight generators \(T^1, T^2, \ldots, T^8 \)

E.g., in color case \(\Rightarrow\) 8 gluons
\(\Rightarrow\) 8 Gell-Mann matrices
\(g_i = 1, \ldots, 8 \)

ONLY TWO CAN BE SIMULTANEOUSLY DIAGONALIZED \(\Rightarrow\) Usually called \(T^3, T^8 \)

\(\Rightarrow\) All states can be chosen as eigenstates of \(T^3, T^8 \):

\[T^3 | m_3, m_8 \rangle = m_3 | m_3, m_8 \rangle \]
\[T^8 | m_3, m_8 \rangle = m_8 | m_3, m_8 \rangle \]

States can now be represented graphically in an \((m_3, m_8)\) PLANE:
Just as for SU(2), only certain representations are allowed for self-consistency:

- "singlet" \(1\)
- "triplet" \(3\) (fundamental)
- "antitriplet" \(\bar{3}\)
- Conjugate: flip each point through origin!
- "hextet" \(6\)
- "octet" \(8\) (real)
 \[8 = \bar{8}\]
- "decuplet" \(10\)

...etc.
e.g., in flavor case, we have

\[\begin{array}{c}
\text{quarks} \\
\text{anti-quarks}
\end{array} \]

Thus, "adding" these together in various combinations (i.e., taking the tensor product \(3 \times \bar{3} \)) we obtain

\[d \bar{s} = K^0 \]
\[u \bar{s} = K^+ \]
\[k^- = \bar{u}s \]
\[\eta^0 = \frac{1}{\sqrt{6}} (u \bar{u} + d \bar{d} - 2 s \bar{s}) \]

plus a singlet:

\[u \bar{u} + d \bar{d} + s \bar{s} \]
It turns out that all larger reps can be constructed in this way by tensoring together combinations of the fundamental representations:

- e.g. $3 \otimes \bar{3} = 8 \oplus 1$ (MESONS)

$3 \otimes 3 = 6 \oplus 3$

$6 \otimes 3 = 10 \oplus 8$

$3 \otimes 3 \otimes 3 = 10 + 8 + 8 \oplus 1$ (BARYONS)

Big representations are just products of small representations!
These relations can also be represented by matrices.

Imagine the fundamental rep as a vector

\[B_i = \begin{pmatrix} u \\ d \\ s \end{pmatrix} \quad \overline{B}_i = \begin{pmatrix} \bar{u} \\ \bar{d} \\ \bar{s} \end{pmatrix} \]

Then, e.g.,

- \[B_i \otimes B_i = \begin{pmatrix} M_{ji} \end{pmatrix} \quad \text{symmetric} \quad \text{anti-symmetric} \]

\[j = (uds) \]

- \[\overline{B}_j \otimes B_i = \begin{pmatrix} M_{ji} \end{pmatrix} \quad \text{traceless} \quad \text{trace} \]

\[j = (\bar{u}\bar{d}\bar{s}) \]

where

\[8 = \begin{bmatrix} \bar{u}u & \bar{u}d & \bar{u}s \\ d\bar{u} & d\bar{d} & d\bar{s} \\ s\bar{u} & s\bar{d} & s\bar{s} \end{bmatrix} - \frac{1}{3} \left(\bar{u}\bar{u} + \bar{d}\bar{d} + \bar{s}\bar{s} \right) \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \]

\[= \begin{pmatrix} \frac{1}{\sqrt{2}} \pi^0 + \frac{1}{\sqrt{6}} \eta^0 & \pi^+ & \pi^- \\ \pi^- & \frac{1}{\sqrt{2}} \pi^0 + \frac{1}{\sqrt{6}} \eta^0 & K^+ \\ K^- & \bar{K}^0 & \frac{1}{\sqrt{2}} \eta + \frac{1}{\sqrt{6}} \eta' \end{pmatrix} \]
For SU(3), there are 8 generators:

- T^3, T^8 ← analogues of J_2 for SU(2)
- six others ← analogues of J_+

These do "raising" and "lowering" in the two-dimensional (m_3, m_8) plane:

For color $g^r \nabla_b$
these generators are all gluons

$g \bar{b}$
$g \bar{r}$
$r \bar{b}$
$r \bar{g}$
$b \bar{r}$
$b \bar{g}$

$T^3 = \frac{g \bar{g} - g \bar{r}}{v^2}$
$T^8 = \frac{r \bar{r} + g \bar{g} - 2b \bar{b}}{\sqrt{6}}$

Gluons act on quark lines as we expect, e.g.,

$g \bar{r} → T g$
$\bar{r} → r$
Aside: Why is it called $SU(3)$?

We have already seen that the generators are all (3×3)-dimensional traceless Hermitian matrices

$$\begin{bmatrix}
\bar{r}r - T/3 & \bar{r}g & \bar{r}b \\
\bar{g}r & \bar{g}g - T/3 & \bar{g}b \\
\bar{b}r & \bar{b}g & \bar{b}b - T/3
\end{bmatrix}$$

$$\bar{a} = (\bar{r}g \bar{b})$$

where: $T = \bar{r}r + \bar{g}g + \bar{b}b$

These Hermitian generators are like operators \hat{A}
Recall that such operators can be exponentiated to form group elements

for $SU(2)$: e.g., $D(\Phi, \hat{\pi}) = \exp \left[i \frac{\hat{\pi}}{\hbar} \Delta \Phi \right]$ → unitary rotation operator!

In general, group elements are

$$U(\epsilon a) = \exp \left[i \frac{\epsilon}{a} \epsilon a T_a \right]$$

ϵ_a: parameter

T_a: generators

Since T^a are Hermitian & traceless (3×3)
\Rightarrow U are unitary with det = 1 (3×3)
\Rightarrow $SU(3)$!
SU(3) summary:

- two diagonal generators
 \[T_3 |m_3, m_8\rangle = m_3 |m_3, m_8\rangle \]
 \[T_8 |m_3, m_8\rangle = m_8 |m_3, m_8\rangle \]

- together, all generators fill out the pattern

- with \(T^3 \) in the center,
 (do not raise or lower)

- SU(3) representations are

\[\begin{align*}
1 & \quad 3 \\
3 & \quad 6 & \quad 8 & \quad 10
\end{align*} \]

Note: 1, 8 are real
3, 6, 10 are complex ...
(8 is adjoint)
In general, these types of patterns continue to \textbf{LAGER GROUPS} as well.

In each case,

- \# of commuting generators (like T^3, T^8) \equiv \text{dimensionality of our plots} \equiv \text{RANK of group}

- total \# of generators \equiv \text{ORDER of group}

- generators fill out pictures

\begin{align*}
 \begin{array}{c}
 \text{su}(2) \\
 \text{su}(3)
 \end{array}
\end{align*}

\begin{align*}
 \begin{array}{c}
 \text{these vectors are called "roots".} \\
 \text{These dots are called "weights."}
 \end{array}
\end{align*}

- representations are states which fill out dot patterns

\begin{align*}
 \begin{array}{c}
 \text{etc.}
 \end{array}
\end{align*}

We can then classify all possible groups!
Complete Classification of Lie Groups:

<table>
<thead>
<tr>
<th>Name</th>
<th>Rank</th>
<th>Serial Number (Order)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SU(n)</td>
<td>n-1</td>
<td>(n^2-1)</td>
</tr>
<tr>
<td>SO(2n+1)</td>
<td>n</td>
<td>(n(2n+1))</td>
</tr>
<tr>
<td>Sp(2n)</td>
<td>n</td>
<td>(n(2n+1))</td>
</tr>
<tr>
<td>So(2n)</td>
<td>n</td>
<td>(n(2n-1))</td>
</tr>
<tr>
<td>E_6</td>
<td>6</td>
<td>78</td>
</tr>
<tr>
<td>E_7</td>
<td>7</td>
<td>133</td>
</tr>
<tr>
<td>E_8</td>
<td>8</td>
<td>248</td>
</tr>
<tr>
<td>F_4</td>
<td>4</td>
<td>52</td>
</tr>
<tr>
<td>G_2</td>
<td>2</td>
<td>14</td>
</tr>
</tbody>
</table>

E.g., \(SU(4)\): rank 3; 15 generators \((T^3, T^8, T^1^5)\) diagonal.

Plot representations in a 3-dimensional space:
SUBGROUPS

\[\text{e.g., } SU(3) \rightarrow SU(2) \otimes U(1) \]

"flavor" "isospin" \[Y \]

\[\gamma = \text{weak isospin} \]
\[= \text{strangeness + const.} \]

Just "decompose" representations!

\[Y \]
\[\text{axis} \]

\[SU(3) \times U(1)_Y \]

\[SU(2) \text{ axis} \]

\[\begin{array}{c}
3 \\
\rightarrow \\
\left(\frac{2}{2 \sqrt{3}} \right) \oplus \left(\frac{1}{-3 \sqrt{3}} \right)
\end{array} \]

We can rescale \(Y \) to eliminate fractions if we wish:

\[3 \\
\rightarrow \\
\left(2 \right)_{\frac{1}{2 \sqrt{3}}} \oplus \left(1 \right)_{\frac{-1}{3 \sqrt{3}}} \]

TWO REPRESENTATIONS of subgroup, \(SU(2) \otimes U(1) \),

when properly chosen,

combine into a single representation of a bigger group, \(SU(3) \)!
eg, adjoint rep of $SU(3)$:

$$8 \rightarrow (2)_{+1} \oplus (2)_{-1} \oplus (3)_{0} \oplus (1)_{0}$$

real

conjugates

real

real

eg, decuplet

$$10 \rightarrow (4)_{+1} \oplus (3)_{0} \oplus (2)_{-1} \oplus (1)_{-2}$$

If H is a subgroup of G, then every rep of G can decompose into sums of reps of H!
Or, going backwards, sometimes
a set of reps of one group,
when properly chosen with all quantum
turns properly balanced, can
combine to fill out a
SINGLE REP of a LARGER GROUP!

Hmmm...

That was our original goal!
-to "unify" all of the forces and particles!

We now see how to do this:

⇒ We need a bigger group!

(and hope for a few
miracles along the way...)
What groups G can we choose?

Requirements:

1. SM has rank $= 4$ (four commuting generators) \[T_3, T_8 \quad A_3, B \quad \text{gluons} \quad 2^0, 8 \] \[\implies \] group G must be rank ≥ 4 and contain SM as subgroup

2. SM has complex representations \[\text{eg (3, 2), } T_3, \text{ no } (\bar{3}, 2), -T_3 \] \[\implies \] group G must also have complex reps \[\text{eg } SU(6) \text{ } \text{doesnt } \quad \text{Su(3) does} \]

3. SM is free of chiral anomalies \[\implies \] group G must have reps for which anomalies can cancel

4. If we want to relate the couplings \(g_1, g_2, g_3 \) to each other \[\implies \] G should be a simple group \((\text{not a product of different, unrelated factors}) \)
Look back at previous list of groups.
What are our options?

<table>
<thead>
<tr>
<th>Rank</th>
<th>Group</th>
<th>Group</th>
<th>Group</th>
<th>Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>U(1)</td>
<td>SU(2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>SU(3)</td>
<td>SO(5)</td>
<td></td>
<td>G_2</td>
</tr>
<tr>
<td>3</td>
<td>SU(4)</td>
<td>SO(7)</td>
<td>Sp(6)</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>SU(5)</td>
<td>SO(9)</td>
<td>Sp(8)</td>
<td>F_4</td>
</tr>
<tr>
<td>5</td>
<td>SU(6)</td>
<td>SO(11)</td>
<td>Sp(10)</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>SU(7)</td>
<td>SO(13)</td>
<td>Sp(12)</td>
<td>E_6</td>
</tr>
<tr>
<td>7</td>
<td>SU(8)</td>
<td>SO(15)</td>
<td>Sp(14)</td>
<td>E_7</td>
</tr>
<tr>
<td>8</td>
<td>SU(9)</td>
<td>SO(17)</td>
<td>Sp(16)</td>
<td>E_8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

〇 CIRCLE INDICATES GROUP HAS COMPLEX REPS.
Therefore, our options are:

- if $G_1 =$ simple, then $G = \begin{cases} SU(5) \text{ rank 4} \\ SU(6), SO(10) \text{ rank 5} \\ SU(7), E_6 \text{ rank 6} \end{cases}$

- if $G_1 =$ product group, then
 - require complex factor to contain $SU(3)$ as subgroup
 - remaining factors to contain $SU(2) \times U(1)$

$\Rightarrow G = \begin{cases} SU(3) \times SU(2) \times SU(2) \text{ rank 4} \\ SU(3) \times SU(3) \\ SU(3) \times SO(5) \end{cases}$

$\begin{cases} SU(4) \times SU(2) \times U(1) \text{ rank 5} \\ SU(4) \times SU(2) \times SU(2) \\ SU(4) \times SU(3) \\ SU(4) \times SO(5) \\ SU(3) \times SO(7) \\ SU(3) \times Sp(6) \end{cases}$

\[\vdots\text{ etc.}\]
Most of these choices do not succeed in producing interesting unifications. However, interesting cases are:

rank - 4: \(SU(5) \)

Pati-Salam

rank - 5: \(\left\{ \begin{array}{l} SO(10) \\ SU(4) \times SU(2) \times SU(2) \end{array} \right. \)

rank - 6: \(E_6 \)

These groups have the relative subgroup structure:

\[E_6 \rightarrow SO(10) \otimes U(1) \]

\[\begin{array}{c}
SU(5) \otimes U(1) \\
SU(4) \otimes SU(2) \otimes SU(2) \otimes U(1)
\end{array} \]

Let's begin by looking at \(SU(5) \).
\[
\begin{align*}
\text{SU}(5) & \rightarrow \text{SU}(3) \otimes \text{SU}(2) \otimes U(1)
\end{align*}
\]

Representations decompose as

\[
\begin{align*}
1 & \rightarrow (1, 1) , \\
5 & \rightarrow (3, 1)_2 \oplus (1, 2)_3 \\
10 & \rightarrow (3, 2)_1 \oplus (\overline{3}, 1)_4 \oplus (1, 1)_6 \\
15 & \rightarrow (6, 1)_4 \oplus (3, 2)_1 \oplus (1, 3)_6 \\
24 & \rightarrow (8, 1)_6 \oplus (3, 2)_5 \oplus (\overline{3}, 2)_5 \\
& \quad \oplus (1, 3) , \oplus (1, 1)
\end{align*}
\]

30, 40,
45, 50, 70 etc...

where all \(U(1) \) charges are normalized to avoid fractions
(as is conventionally done in standard references...)

Does this have the potential for a Successful Unification?
Forms of SM:

Recall each SM generation contains 15 states

\[
\begin{pmatrix}
\begin{array}{c}
(u) \\
(d) \\
(u^c) \\
(d^c)
\end{array}
\end{pmatrix}
\begin{pmatrix}
\begin{array}{c}
(12) \\
(1) \\
(12)^c
\end{array}
\end{pmatrix}
\times 3 \text{ colors}
\]

However, the 115 representation of SU(5) does not accommodate them

(e.g., 115 gives a color sextet!)

\[\text{Nor does the 45 representation accommodate the three generations.}\]

But look at 110 - if we rescale above U(1) quantum field by \(\frac{1}{3}\), it becomes

\[
110 \rightarrow \begin{pmatrix}
\begin{array}{c}
(3, 2)^{4/3} \\
(\bar{3}, 1)^{-4} \\
(1, 1)^{2}
\end{array}
\end{pmatrix}
\]

All that's left is

\[
d^c = (\bar{3}, 1)^{2/3} \quad \text{and} \quad L = (1, 2)^{-1} \}
\]

\(5\) states

⇒ These don't fit into a \(5\)

but into a \(\bar{5}\)!
Thus, an entire SM generation fits into \[\overline{5} + 10 \] of \(SU(5) \) with nothing left over (no exotics)!

In matrix notation, this is

\[
\overline{\mathbf{5}} = \begin{pmatrix} d^c & d^c & d^c \\ u^c & Q \\ \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ \end{pmatrix}
\]

\[\text{row vector} \]

\[\text{color part} \quad \text{weak part} \]

\[10 = \text{antisymmetric component of } 5 \times 5 \text{ matrix} \]

\[
\begin{pmatrix}
0 & u^c & u^c & u^c & dr \\
0 & 0 & u_g & u_g & dg \\
0 & 0 & 0 & u_b & db \\
0 & 0 & 0 & 0 & e^c \\
0 & 0 & 0 & 0 & 0
\end{pmatrix}
\]

where (recall) \[\begin{cases}
\mathbf{u}^c: (\overline{3}, 1) & SU(3) \text{ triplet, } SU(2) \text{ singlet} \\
\mathbf{Q}: (3, 2) & \text{ triplet, doublet} \\
\mathbf{e}^c: (1, 1) & \text{ singlet, singlet}
\end{cases} \]
24 → \((8,1) \oplus (1,3) \oplus (1,1) \oplus (3,2) \oplus (\bar{3},2)\)

- gluons: \(A^t, A^3, B\)
- SM gauge bosons all successfully embedded!

Proof that:
\[\text{SU}(3) \otimes \text{SU}(2) \otimes \text{U}(1) \subseteq \text{SU}(5) \]

But what are these??!

Appear to be gauge bosons carrying:
- color
- weak charge
- hypercharge ... simultaneously!

Also,
\[Q_{EM} = T_3 + \frac{Y}{2} = \{ \pm \frac{1}{3}, \pm \frac{4}{3} \} \]

They are also electromagnetically fractionally charged as well!
In matrix language:

Since $\bar{\psi} \psi = 24 + 11$

This is a traceless matrix:

\[24 = \left(\begin{array}{cc|c|c}
(\text{quarks}) & X_\tau & Y_\tau & 1 \\
(\text{gluons}) & X_g & Y_g & X_b & Y_b \\
X_\tau & X_g & X_B & \left(A^+, A^3, B \right) \\
Y_\tau & Y_g & Y_B & &
\end{array} \right) \]

\[Q_{\text{EM}}^{(x)} = -\frac{1}{3} \]
\[Q_{\text{EM}}^{(y)} = -\frac{4}{3} \]
\[Q_{\text{EM}}^{(y)} = \frac{1}{3} \]
\[Q_{\text{EM}}^{(y)} = \frac{4}{3} \]

⇒ "X, Y" gauge bosons are "off-diagonal" in color/electroweak space, carry both types of charges simultaneously!

⇒ They can connect quarks to leptons!
e.g.,

\[X_r \quad (Q = -\frac{1}{3}, T_3 = \frac{1}{2}) \]

or

\[Y_r \quad (Q = -\frac{4}{3}, T_3 = -\frac{1}{2}) \]

In each case:
- \(Q_{EM} \) is conserved
- \(T_3 \) is conserved
- Color lines flow correctly

\(X, Y \) appear as "leptoquarks" - injecting color and \(T_3 = \pm \frac{1}{2} \)!

\[\Rightarrow \] Baryon \# and lepton \# no longer conserved!

Each of these diagrams is \(AB = \frac{1}{3} \) process! ("LEPTOQUARK CHANNEL")
There is also another channel in which \((X,Y)\) bosons can act:

Since \((X,Y)\) carry \(\overline{3}\) of color, they can also turn quarks directly into antiquarks because \(3 \otimes \overline{3} = 6 \oplus \overline{3}\)

\[
\begin{align*}
Q &= -\frac{1}{3} \\
T_3 &= \frac{1}{2}
\end{align*}
\]

\(X_r\) \(\rightarrow\) \(\overline{U}\) \(\rightarrow\) \(\bar{d}\) \(\rightarrow\) \(\overline{U_g}\) \(\rightarrow\) \(U_g\)

\[
\begin{align*}
Q &= -\frac{2}{3} \\
T &= 0
\end{align*}
\]

\[
\begin{align*}
Q &= -\frac{1}{3} \\
T &= -\frac{1}{2}
\end{align*}
\]

\[
\begin{align*}
Q &= -\frac{4}{3} \\
T_3 &= -\frac{1}{2}
\end{align*}
\]

\(Y_r\) \(\rightarrow\) \(\overline{U}\) \(\rightarrow\) \(\bar{d}\) \(\rightarrow\) \(\overline{U_g}\) \(\rightarrow\) \(U_g\)

\[
\begin{align*}
T &= 0 \\
Q &= -\frac{2}{3}
\end{align*}
\]

\[
\begin{align*}
T &= \frac{1}{2} \\
Q &= \frac{2}{3}
\end{align*}
\]

In such channels, \((X,Y)\) act as "di-quarks", not leptogluarks!

Here \(\Delta B = -\frac{2}{3}\) since \(q \rightarrow \overline{q}\).
Note that in each channel,

(X,Y) gauge bosons change

\underline{incoming \ particles}\n
into

\underline{outgoing \ antiparticles}!

Very strange...

\underline{fermion \ # \ is \ not \ conserved}!
Finally, the Higgs representation $\phi : (1, 2)_1$ is embedded easily into the 5 rep of $SU(5)$:

$$\begin{align*}
5 &\rightarrow (3, 1)_{-2/3} \oplus (1, 2)_1 \\
\text{usual Higgs doublet } q &
\end{align*}$$

A new "colored" Higgs triplet ϕ_3,

$$Q_{EM} = T_3 + \frac{Y}{2} = -\frac{1}{3}$$

[same quantum #'s as a RH down quark d_R]

This also mediates new interactions because of the Higgs Yukawa couplings.

E.g., $\mathcal{L}_{SM} = Y_d \overline{d_L} \phi \phi \phi \rightarrow \mathcal{L}_{SU(5)} = Y \overline{T_0 \cdot 10 \cdot 5 \cdot 5}$ contains a singlet

E.g.,

$$\begin{align*}
(T_3 = 0) \\
Q_{EM} = -\frac{1}{3}
\end{align*}$$

$\Delta B = \frac{1}{3}$