Computing Models at LHC

Beauty 2005

Lucia Silvestris

INFN-Bari

24 June 2005
Computing Model Papers

Requirements from Physics groups and experience at running experiments

- Based on operational experience in Data Challenges, production activities, and analysis systems.
- Active participation of experts from CDF, D0, and BaBar
- DAQ/HLT TDR (ATLAS/CMS/LHCb/Alice) and Physics TDR (ATLAS)

Main focus is first major LHC run (2008)
- 2007 ~ 50 days (2 -3x10^6s, 5x10^32)
- 2008 200 days (10^7s, 2x10^33), 20 days(10^6s) Heavy Ions
- 2009 200 days (10^7s, 2x10^33), 20 days(10^6s) Heavy Ions
- 2010 200 days (10^7s, 10^34), 20 days(10^6s) Heavy Ions

This talk focus on computing and analysis model for pp collision

LHC Computing TDR's submitted to LHCC on 20-25 June 2005
Examples: LHCb Event Data Flow

- **Simulated Data Flow (SIMU)**
 - Physics Generator
 - Generator Data
 - Detector Simulation
 - Detector Hits
 - Trigger Simulation
 - RAWmc data
 - Calibration data
 - Reconstruction
 - Data Summary "Tape" (DST) data

- **Real Data Flow (Raw)**
 - L0 Trigger
 - L1 Trigger
 - High Level Trigger
 - RAW data
 - RECO/DST/ESD
Event Data Model - Data Tiers

RAW
- Event format produced by event filter (byte-stream) or object data
- Used for Detector Understanding, Code optimization, Calibrations, ...two copies

RECO/DST/ESD
- Reconstructed hits, Reconstructed objects (tracks, vertices, jets, electrons, muons, etc.)
 Track Refitting, new MET
- Used by all Early Analysis, and by some detailed Analyses

AOD
- Reconstructed objects (tracks, vertices, jets, electrons, muons, etc.), small quantities of
 very localized hit information.
- Used by most Physics Analysis, whole copy at each Tier-1

TAG
- High level physics objects, run info (event directory);

Plus MC in ~ 1:1 ratio with data
Inputs to LHC Computing Models

Raw Data size is estimated to be 1.5MB for 2x10^{33} first full physics run
- ~300kB (Estimated from current MC)
- Multiplicative factors drawn from CDF experience
 -- MC Underestimation factor 1.6
 -- HLT Inflation of RAW Data, factor 1.25
 -- Startup, thresholds, zero suppression,… Factor 2.5
- Real initial event size more like 1.5MB
 -- Expect to be in the range from 1 to 2 MB
 - Use 1.5 as central value
- Hard to deduce when the event size will fall and how that will be compensated by increasing Luminosity

Event Rate is estimated to be 150Hz for 2x10^{33} first full physics run
- Minimum rate for discovery physics and calibration: 105Hz (DAQ TDR)
- +50Hz Standard Model (B Physics, jets, hadronic, top,…)

24/06/05
Prioritisation will be important

- In 2007/8, computing system efficiency may not be 100%
- Cope with potential reconstruction backlogs without delaying critical data
- Reserve possibility of 'prompt calibration' using low-latency data
- Also important after first reco, and throughout system
 - E.g. for data distribution, 'prompt' analysis

Streaming

- Classifying events early allows prioritisation
- Crudest example: 'express stream' of hot / calib events
- Propose $O(50)$ 'primary datasets', $O(10)$ 'online streams'
- Primary datasets are immutable, but
 - Can have overlap (assume ~ 10%)
 - Analysis can (with some effort) draw upon subsets and superset of primary datasets
LHC Data Grid - Tiered Architecture

Tier 0

CMS Online (HLT)
-10 online streams (RAW)
~10 online streams (RAW)
Primary tape archive

CMS-CAF (CERN Analysis Facility)

First pass reconstruction
~50 Datasets (RAW+RECO)

Tier 1

~50 Datasets (RAW+RECO)
shared amongst Tier 1's

Average of ~8 Datasets per Tier 1 (RAW+RECO)

Analysis, Calibration, Re-construction, skim making...
Secondary tape archive

Skims: RECO, AOD's

~6 Tier-1 Centres (off-site)

~25 Tier-2 Centres

Tier 2
Data Flow: EvF -> Tier-0

HLT (Event Filter) is the final stage of the online trigger
Baseline is several streams coming out of Event Filter
 - Primary physics data streams
 - Rapid turn-around “express line”
 - Rapid turn-around calibration events
 - Debugging or diagnostics stream (e.g. for pathological events)

Main focus here on primary physics data streams
 - Goal of express line and calibration stream is low latency turn-around
 - Calibration stream results used in processing of production stream
 - Express line and calibration stream contribute ~20% to bandwidth
 - Detailed processing model for these is still under investigation
Data Flow: Tier-0 Operations

Online Streams arrive in a 20 day input buffer
- They are split into Primary Datasets (50) that are concatenated to form reasonable file sizes
- Primary Dataset RAW data is:
 • archived to tape at Tier-0
 - Allowing Online buffer space to be released quickly
 • Sent to reconstruction nodes in the Tier-0

Resultant RECO Data is concatenated (zip) with matching RAW data to form a distributable format FEVT (Full Event)
- RECO data is archived to tape at Tier-0
- FEVT are distributed to Tier-1 centers (T1s subscribe to data, actively pushed)
 • Each Custodial Tier-1 receives all the FEVT for a few 5-10 Primary Datasets
 • Initially there is just one offsite copy of the full FEVT
- First pass processing on express/calibration physics stream
- 24-48 hours later, process full physics data stream with reasonable calibrations
- AOD copy is sent to each Tier-1 center
Data Flow: Tier-0 Specifications

Efficiency for scheduled CPU	85%
Efficiency for “chaotic” CPU	60–75%
Disk utilization efficiency	70%
Mass Storage utilization efficiency	100%

Data Flow: Tier-0 Specifications (continued)

<table>
<thead>
<tr>
<th>Units</th>
<th>ATLAS</th>
<th>CMS</th>
<th>LHCb</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recon. Time/ev</td>
<td>kSI²k sec</td>
<td>15</td>
<td>25</td>
</tr>
<tr>
<td>Simul. Time/ev</td>
<td>kSI²k sec</td>
<td>100</td>
<td>45</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Units</th>
<th>ATLAS</th>
<th>CMS</th>
<th>LHCb</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tier 0 CPU</td>
<td>MSI²k</td>
<td>4.1</td>
<td>4.6</td>
</tr>
<tr>
<td>CPU at CERN</td>
<td>MSI²k</td>
<td>6.3</td>
<td>7.5</td>
</tr>
<tr>
<td>Tier 0 Disk</td>
<td>PB</td>
<td>0.4</td>
<td>0.4</td>
</tr>
<tr>
<td>Disk CERN</td>
<td>PB</td>
<td>2.0</td>
<td>1.7</td>
</tr>
<tr>
<td>Tier 0 Tape</td>
<td>PB</td>
<td>4.2</td>
<td>3.8</td>
</tr>
<tr>
<td>Tape CERN</td>
<td>PB</td>
<td>4.6</td>
<td>5.6</td>
</tr>
</tbody>
</table>
Data Flow: Tier-1 Operations

Receive Custodial data (FEVT (RAW+DST) and AOD)
- Current Dataset “on disk”
- Other bulk data mostly on tape with disk cache for staging
- Good tools needed to optimize this splitting

Receive Reconstructed Simulated events from Tier-2
- Archive them, distribute out AOD for Simu data to all other Tier-1 sites

Serve Data to Analysis groups running selections, skims, re-processing
- Some local analysis possibilities
- Most analysis products sent to Tier-2 for iterative analysis work

Run reconstruction/calibration/alignment passes on local RAW/RECO and SIMU data
- Reprocess 1-2 months after arrival with better calibrations
- Reprocess all resident RAW at year end with improved calibration and software

Operational 24h*7day
Data Flow: Tier-1 Specifications

Average for each T1

<table>
<thead>
<tr>
<th>Units</th>
<th>ATLAS</th>
<th>CMS</th>
<th>LHCb</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tier 1 CPU</td>
<td>MSI2k</td>
<td>1.8</td>
<td>2.1</td>
</tr>
<tr>
<td>Tier 1 Disk</td>
<td>PB</td>
<td>1.23</td>
<td>1.11</td>
</tr>
<tr>
<td>Tier 1 Tape</td>
<td>PB</td>
<td>0.65</td>
<td>1.85</td>
</tr>
</tbody>
</table>

ΣT1
Atlas 10
CMS 6
LHCb 6

<table>
<thead>
<tr>
<th>Units</th>
<th>ATLAS</th>
<th>CMS</th>
<th>LHCb</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tier 1 CPU</td>
<td>MSI2k</td>
<td>18</td>
<td>12.8</td>
</tr>
<tr>
<td>Tier 1 Disk</td>
<td>PB</td>
<td>12.3</td>
<td>6.7</td>
</tr>
<tr>
<td>Tier 1 Tape</td>
<td>PB</td>
<td>6.5</td>
<td>11.1</td>
</tr>
</tbody>
</table>

24/06/05
Computing Model at LHC - Beauty 2005
L. Silvestris
Data Flow: Tier-2 Operations

Run Simulation Production and calibration
- Not requiring local staff, jobs managed by central production via Grid. Generated data is sent to Tier-1 for permanent storage.

Serve “Local” or Physics Analysis groups
- (20-50 users?, 1-3 groups?)
- Local Geographic? Physics interests
- Import their datasets (production, or skimmed, or reprocessed)
- CPU available for iterative analysis activities
- Calibration studies
- Studies for Reconstruction Improvements
- Maintain on disk a copy of AODs and locally required TAGs.

Some Tier-2 centres will have large parallel analysis clusters (suitable for PROOF or similar systems).

- It is expected that clusters of Tier-2 centres (“mini grids”) will be configured for use by specific physics groups.
Data Flow: T2 Specifications

CMS Example: Average T2 center

<table>
<thead>
<tr>
<th></th>
<th>Units</th>
<th>ATLAS</th>
<th>CMS</th>
<th>LHCb</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tier 2 CPU</td>
<td>MSI2k</td>
<td>16.2</td>
<td>19.9</td>
<td>7.6</td>
</tr>
<tr>
<td>Tier 2 Disk</td>
<td>PB</td>
<td>6.9</td>
<td>5.3</td>
<td>0.02</td>
</tr>
<tr>
<td>Tier 2 Tape</td>
<td>PB</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Eff Factors

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CPU scheduled</td>
<td>250 kSI2K</td>
</tr>
<tr>
<td>CPU analysis</td>
<td>579 kSI2K</td>
</tr>
<tr>
<td>Disk</td>
<td>218 Tbytes</td>
</tr>
</tbody>
</table>

ΣT2

- Atlas ~30
- CMS ~25
- LHCb ~14
Data Flow: Tier-3 Centres

Functionality
- User interface to the computing system
- Final-stage interactive analysis, code development, testing
- Opportunistic Monte Carlo generation

Responsibility
- Most institutes; desktop machines up to group cluster

Use by experiments
- Not part of the baseline computing system
 - Uses distributed computing services, does not often provide them
- Not subject to formal agreements

Resources
- Not specified: very wide range, though usually small
 - Desktop machines -> University-wide batch system
- But: integrated worldwide, can provide significant resources to experiments on best-effort basis
Main Uncertainties on the Computing models

- Chaotic user analysis of augmented AOD streams, tuples (skims), new selections etc and individual user simulation and CPU-bound tasks matching the official MC production.
- Calibration and conditions data.
Conditions data: all non-event data required for subsequent data processing

1. Detector control system data (DCS) - 'slow controls' logging
2. Data quality/monitoring information - summary diagnostics and histograms
3. Detector and DAQ configuration information
 - Used for setting up and controlling runs, but also needed offline
4. 'Traditional' calibration and alignment information
 - Calibration procedures determine (4) and some of (3), others have different sources
 - Also need for bookkeeping 'meta-data', but not considered part of conditions data

Possible strategy for conditions data (ATLAS Example):
- All stored in one 'conditions database' (condDB) - at least at conceptual level
- Offline reconstruction and analysis only accesses condDB for non-event data
- CondDB is partitioned, replicated and distributed as necessary
 - Major clients: online system, subdetector diagnostics, offline reconstruction & analysis
 - Will require different subsets of data, and different access patterns
 - Master condDB held at CERN (probably in computer centre)
Example: Calibration processing strategies

Different options for calibration/monitoring processing - all will be used

- Processing in the sub-detector readout systems
 - In physics or dedicated calibration runs, only partial event fragments, no correlations
 - Only send out limited summary information (except for debugging purposes)
- Processing in the HLT system
 - Using special triggers invoking ‘calibration’ algorithms, at end of standard processing for accepted (or rejected) events – need dedicated online resources to avoid loading HLT?
 - Correlations and full event processing possible, need to gather statistics from many processing nodes (e.g. merging of monitoring histograms)
- Processing in a dedicated calibration step before prompt reconstruction
 - Consume the event filter output – physics or dedicated calibration streams
 - Only bytestream RAW data would be available, results of EF processing largely lost
 - A place to merge in results of asynchronous calibration (e.g. optical alignment systems)
 - Potentially very resource hungry – ship some calibration data to remote institutions?
- Processing after prompt reconstruction
 - To improve calibrations ready for subsequent reconstruction passes
 - Need for access to DST (ESD) and raw data for some tasks – careful resource management
LHC experiments are engaged in an aggressive program of “data challenges” of increasing complexity.

Each is focus on a given aspect, all encompass the whole data analysis process:

- Simulation, reconstruction, statistical analysis
- Organized production, end-user batch job, interactive work

Past: Data Challenge `02 & Data Challenge ’04
Near Future: Cosmic Challenge end ’05-begin ’06
Future: Data Challenge `06 and Software & Computing Commissioning Test.
Focused on High Level Trigger studies

- 6 M events = 150 Physics channels
- 19000 files = 500 Event Collections = 20 TB
 - NoPU: 2.5M, 2x10^{33}PU: 4.4M, 10^{34}PU: 3.8M, filter: 2.9M
- 100 000 jobs, 45 years CPU (wall-clock)
- 11 Regional Centers
 - > 20 sites in USA, Europe, Russia
 - ~ 1000 CPUs
- More than 10 TB traveled on the WAN
- More than 100 physics involved in the final analysis

GEANT3, Objectivity, Paw, Root
CMS Object Reconstruction & Analysis Framework COBRA and applications ORCA

Successful validation of CMS High Level Trigger Algorithms
Rejection factors, computing performance, reconstruction-framework
Results published in DAQ/HLT TDR December 2002
Examples: Data Challenge 2004

Event generation
PYTHIA

Detector simulation
OSCAR

Digitization
ORCA

Reconstruction,
L1, HLT
ORCA

Calibration

Analysis
Iguana/
Root/PAW

\[\mu \quad b/\tau \quad e/\gamma \quad \text{JetMet} \]

MC ntuples

Detector Hits

Digis:
raw data
bx

DST

Ntuples:
MC info,
tracks,
etc

Analysis

Computing Model at LHC - Beauty 2005
L. Silvestris
Interactive Analysis/Inspection/Debugging

Visualization applications for simul, reco and test-beams (DAQ application);
Visualization of reconstructed and simulated objects: tracks, hits, digis, vertices, etc.; Event browser;
Data challenge “DC06” should be consider as a Software & Computing Commissioning with a continuous operation rather than a stand-alone challenge.

Main aim of Software & Computing Commissioning will be to test the software and computing infrastructure that we will need at the beginning of 2007:

- Calibration and alignment procedures and conditions DB
- Full trigger chain
- Tier-0 reconstruction and data distribution
- Distributed access to the data for analysis

At the end (autumn 2006) we will have a working and operational system, ready to take data with cosmic rays at increasing rates.
Conclusions

Computing & Analysis Models
- Maintains flexibility wherever possible

There are (and will remain for some time) many unknowns
- Calibration and alignment strategy is still evolving (DC2 Atlas) & Cosmic Data Challenge (CMS)
- Physics data access patterns start to be exercised this Spring (Atlas) or P-TDR preparation (CMS)
 - Unlikely to know the real patterns until 2007/2008!
- Still uncertainties on
 - the event sizes
 - # of simulated events
 - on software performances (time needed for reconstruction, calibration (alignment), analysis ...)
 -
Conclusions ...

2006/2007/first year of data taking...

Essential tasks:
Detector, Event Filter, software and computing commissioning
only after ...

24/06/05
Conclusions

b production at LHC
- Peak luminosity: $2 \times 10^{33} \text{ cm}^{-2}\text{s}^{-1} \rightarrow 10^{34} \text{ cm}^{-2}\text{s}^{-1}$
- $\sigma = 500 \mu\text{b} \rightarrow \mathcal{O}(10^5-10^6) \text{ b pairs/sec}$
- Only 100 ev/sec on tape for ALL interesting physics channels

B-physics program
- Rare decays
- CP violation
- $B^0_s - \bar{B}^0_s$ mixing

Trigger highly challenging
- $B_s \rightarrow \mu\mu$
- $B_s \rightarrow J/\psi\phi \rightarrow \mu\mu \, KK$
- $B_s \rightarrow D_s\pi \rightarrow KK \, \pi\pi$

Benchmark channels

High Luminosity

- Fermilab
- SSC
- LHC

LHC

- CERN

- Conclusions

- High Luminosity
Back-up Slides
LHC Data Grid Hierarchy

Tier 0 +1 +2

CERN 12.1 MSI2k
~2 PB Disk; Tape Robot

Tier 1

~2.5 Gbits/sec

IN2P3 Center
RAL Center

Tier 2

~2.5 Gbps

Tier 3

~PByte/sec

~100-400 MBytes/sec

Tier 4

2.5 Gbps

Physicists work on analysis “channels”

Each institute has ~10 physicists working on one or more channels

Tier 2 Center

Workstations

~0.25TIPS

Physics data cache

100 - 1000 Mbits/sec

IN2P3 Center
RAL Center

Institute

FNAL

Experiment

Online System

PC (2004) = ~1 kSpecInt2k

2.5 Gbps

PC (2004) = ~1 kSpecInt2k

L. Silvestris
CMS Example Calculation: Tier-0 CPU

Required CPU = 4588 kSI2k = Scheduled_CPU / EffSchCPU

Scheduled_CPU = 3900 kSI2k = Reco_CPU + Calib CPU

Reco_CPU = 3750 kSI2k = (NRawEvts x RecCPU/ev) / LHCYear

Calib_CPU = 150 kSI2k = (NRawEvts x CalFrac x CalCPU/ev) / LHCYear

NRawEvts = 1.5x10^9 = L2Rate x LHCYear

L2Rate = 150Hz
LHCYear = 10^7 Sec
RecCPU = 25kSI2k/ev
CalCPU = 10kSI2k/ev
CalFrac = 10%
EffSchCPU = 85%
CMS Example Calculation: Tier-0 Tape

Required Tape = 3775 TB =
Annual_Tape / EffTape(100%)

Annual_Tape = 3775 TB =
SUM(RAW+HIRaw+Calib+1stReco+2ndReco
+HIReco+1stAOD+2ndAOD)

<table>
<thead>
<tr>
<th>Component</th>
<th>Amount (TB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raw</td>
<td>2250</td>
</tr>
<tr>
<td>HIRaw</td>
<td>350</td>
</tr>
<tr>
<td>Calib</td>
<td>225</td>
</tr>
<tr>
<td>1stReco</td>
<td>375</td>
</tr>
<tr>
<td>2ndReco</td>
<td>375</td>
</tr>
<tr>
<td>HIReco</td>
<td>50</td>
</tr>
<tr>
<td>1stAOD</td>
<td>75</td>
</tr>
<tr>
<td>2ndAOD</td>
<td>75</td>
</tr>
</tbody>
</table>
CMS Example Calculation: Tier-1 CPU

Required CPU = 2128 kSI2k =

\[
\text{Scheduled_CPU (1199) / EffSchCPU + Analysis_CPU (929) / EffAnalCPU}
\]

\[
\text{Scheduled_CPU = 1019 kSI2k = ReReco_Data + ReReco_Simu}
\]

\[
\text{ReReco_Data = 510 kSI2k = (NRawEvts / NTier1 x RecCPU/ev) / (SecYear x NReReco / yr x 6/4)}
\]

\[
\text{ReReco_Simu = 510 kSI2k = (NSimEvts / NTier1 x RecCPU/ev) / (SecYear x NReReco / yr x 6/4)}
\]

\[
\text{Analysis_CPU = 697 kSI2k = Selection + Calibration}
\]

\[
\text{Selection = 672 kSI2k = (NRawEvts + NSimEvts) / (NTier1-1) x SelCPU/ev / TwoDay}
\]

\[
\text{Calibration = 25 kSI2k = (NRawEvts / (NTier1-1) x CalFrac x CalCPU/ev) / LHCyear}
\]

NRawEvts = 1.5 \times 10^9 = NSimEvts

LHCyear = 10^7 \text{ Sec}

RecCPU = 25 kSI2k/ev

SelCPU = 0.25 kSI2k/ev

CalCPU = 10 kSI2k/ev

CalFrac = 10\%

EffSchCPU = 85\%

EffAnalCPU = 75\%

\[
\text{NReReco / yr = 2}
\]

"6/4" - complete rereco in 4 months, not 6
Example Calculation: Tier-1 Data Serving Rate

Selection = 672 kSI2k =
(NRawEvts+NSimEvts) /
(NTier1-1) x SelCPU/ev) / TwoDay

Data I/O Rate ≈ 800 MB/s =
Local Sim+Data Reco Sample size / TwoDay

Note, one complete selection pass every two days, is also/only one pass every month for each of 10-15 analysis groups
CMS more than ATLAS and LHCb is pushing available networks to their limits in the Tier-1/Tier-2 connections

- Tier -0 needs ~2x10Gb/s links for CMS
- Each Tier-1 needs ~10Gb/s links
- Each Tier-2 needs 1Gb/s for its incoming traffic

- There will be extreme upward pressure on these numbers as the distributed computing becomes more and more useable and effective

Service Challenges with LCG, CMS Tier-1 centers and CMS Data Management team/components planned for 2005 and 2006
- Ensure that we are on path to achieve these performances.
Event streaming for prompt calibration

Data streams from the event filter
1. Bulk physics data stream (~300 MB/sec)
2. Express physics stream (duplicating events in bulk stream)
3. Dedicated calibration streams
4. Diagnostic and debugging stream (problem events)

Motivation and role of calibration streams
- Read out of calibration triggers not useful for physics
 • May be processed differently
- Partial detector readout (selected subdetectors only, regions of interest through whole detector around lepton candidates)
 • Implications for TDAQ system being studied
- Separate out events useful for calibration and subdetector diagnostics from bulk physics sample
 • Easier and more efficient access to selected data, especially during start up phase
 • Implies some duplication of data in bulk physics and/or express stream
- Calibration + express stream should consume ~20% of bandwidth
Calibration streams provide input to determine calibration/alignment for first-pass reconstruction

- Calibration data arrives at Tier-0 buffer disk with minimal latency
- Processing can start soon after end of fill, or even during fill itself

Typical tasks during calibration step

- Process calibration stream data for fill or subset (may need event reconstruction)
- Derive updated calibration constants and upload to conditions database
 - Also incorporate results of 'asynchronous' calibration processes (e.g. optical alignment)
- Verify correctness of constants
 - Re-reconstruct control samples of events (part of calibration stream, or express?)
 - Manual human checking may be required, at least initially
- Initial target to be ready for bulk physics reconstruction 24 hours after end of fill
 - Time to process, derive constants, re-reconstruct and check on ~10% of full data sample - needs $O(10\%)$ Tier 0 reconstruction resources in steady state
 - Anticipate need to devote greater resources during startup, process over and over
 - Obvious place to use remote resources - ideas, but no concrete plans as yet

Process is not fast enough for express stream - use constants from last fill?
Offline calibration and alignment

Processing after pass 1 reconstruction
- To improve calibration constants ready for subsequent reconstruction passes
- ‘Analysis’ type processing – individual groups working independently to understand all details of subdetector performance and calibration
- But requires access to ESD and sometimes RAW data – resource-hungry
 - Passes over large samples of RAW (and ESD) data will have to be centrally scheduled and coordinated

Subdetector calibration groups starting to consider these issues
- First definition of DST (ESD) now available
 - What calibration tasks can be done with what datatype?
 - What changes could be made to improve usability of samples
 - e.g. on ESD add hits not associated but close to a track to allow iterating ID pattern recognition after alignment, without going back to RAW data
- Calibration issues starting to receive higher priority after combined testbeam
 - Detailed definition of calibration streams and samples, going beyond what was presented today
 - Discussions with Tridas (TDAQ) on feasibility of various calibration strategies and run types
Examples: CMS Data Challenge 04

Tier-0
- GDB
- ORCA RECO Job
- IB
- fake on-line process
- RefDB
- Castor
- Tier-0 data distribution agents

Tier-0's data distribution agents move to:
- Tier-1: Physicist, T1 storage
- Tier-2: Physicist, T2 storage

Tier-1
- Tier-1 agent
- TMDB
- POOL RLS catalogue
- MSS
- ORCA Analysis Job
- ORCA Grid Job

Tier-2
- LCG-2 Services
- ORCA Local Job

Tier-3
- Castor
- RefDB
- TMD
- POOL RLS catalogue

Aim of DC04:
- reach a sustained 25Hz reconstruction rate in the Tier-0 farm (25% of the target conditions for LHC startup) using (LCG-2, Grid3)
- register data and metadata to a catalogue
- transfer the reconstructed data to all Tier-1 centers
- analyze the reconstructed data at the Tier-1's as they arrive
- publicize to the community the data produced at Tier-1's
- monitor and archive of performance criteria of the ensemble of activities
- Not a CPU challenge, but a full chain demonstration!

Pre-challenge production in 2003/04
- 70M Monte Carlo events (30M with Geant-4) produced
- Classic and grid (CMS/LCG-0, LCG-1, Grid3) productions
Maximum rate of analysis jobs: 194 jobs/hour

Maximum rate of analysed events: 26 Hz

Total of ~15000 analysis jobs via Grid tools in ~2 weeks (95-99% efficiency)

Datasets examples:

- $B_0^s \rightarrow J/\psi \varphi$
 - Bkg: mu03_tt2mu, mu03_DY2mu
- $tTH, H \rightarrow bbar, t \rightarrow Wb, W \rightarrow l\nu, T \rightarrow Wb, W \rightarrow had.$
 - Bkg: bt03_ttb_bth
 - Bkg: bt03_qcd170_tth
 - Bkg: mu03_W1mu
- $H \rightarrow WW \rightarrow 2\mu 2\nu$
 - Bkg: mu03_tt2mu, mu03_DY2mu

Using LCG-2
Sub-system (component) tests with well-defined goals, preconditions, clients and quantifiable acceptance tests

- Full Software Chain
 - Generators through to physics analysis
- DB/ Calibration & Alignment
- Event Filter & Data Quality Monitoring
- Physics Analysis
- Integrated TDAQ/Offline
- Tier-0 Scaling
- Distributed Data Management
- Distributed Production (Simulation & Re-processing)

Each sub-system is decomposed into components

- E.g. Generators, Reconstruction (DST creation)

Goal is to minimize coupling between sub-systems and components and to perform focused and quantifiable tests
Several different tests

- Physics Performance - e.g.
 - Mass resolutions, residuals, etc.
- Functionality - e.g.
 - Digitization functional both standalone and on Grid
- Technical Performance - e.g.
 - Reconstruction CPU time better than 400%, 200%, 125%, 100% of target (target need to be defined)
 - Reconstruction error in $1/10^5$, $1/10^6$, etc. events
 - Tier-0 job success rate better than 90%, etc.
The end-user inputs:
DataSets (runs, #events and conditions...) + private code.

Tools for analysis job preparation, splitting, submission and retrieval
First version integrated with LCG-2 available
Summary

This physic program..

Cross-sections of physics processes vary over many orders of magnitude:

- inelastic: 10^9 Hz
- $b\bar{b}$ production: 10^6-10^7 Hz
- $W\rightarrow l\nu$: 10^2 Hz
- $t\bar{t}$ production: 10 Hz
- Higgs (100 GeV/c2): 0.1 Hz
- Higgs (600 GeV/c2): 10^{-2} Hz

- SuSy and BSM...
LHC Challenges: Geographical Spread

Example in CMS

~1700 Physicists
~150 Institutes
~32 Countries
(and growing)

CERN Member state 55 %
Non Member state 45 %

Major challenges associated with:

Communication and collaboration at a distance
Distributed computing resources
Remote software development and physics analysis
Challenges: Physics

Example: b physics in CMS

A large distributed effort already today
- ~150 physicists in CMS Heavy-flavor group
- > 20 institutions involved

Requires precise and specialized algorithms for vertex-reconstruction and particle identification

Most of CMS triggered events include B particles
- High level software triggers select exclusive channels in events triggered in hardware using inclusive conditions

Challenges:
- Allow remote physicists to access detailed event-information
- Migrate effectively reconstruction and selection algorithms to High Level Trigger
Architecture Overview

Consistent User Interface

Data Browser

Generic analysis tools

Analysis job wizards

Detector/Event Display

Federation wizards

Software development and installation

ORCA

OSCAR

FAMOS

COBRA

GRID tools

LCG tools

CMS tools

Distributed Data Store & Computing Infrastructure

Coherent set of basic tools and mechanisms
Simulation, Reconstruction & Analysis Software System

- Specific Framework
- Event Filter
- Reconstruction Algorithms
- Physics Analysis
- Data Monitoring

Physics modules

Grid-enabled Application Framework
- Calibration Objects
- Configuration Objects
- Event Objects

Grid-Aware Data-Products

adapters and extensions

- Basic Services
- Object Persistency
- Geant3/4
- CLHEP
- Analysis Tools
- C++ standard library
 Extension toolkit

Uploadable on the Grid
Analysis on a distributed Environment

What she is using?

Local analysis Environment:
Data cache
browser, presenter
Resource broker?

Remote web service:
act as gateway between
users and remote
facility

Remote batch service:
resource allocations,
control, monitoring

Web Server

Clarens

Service

Service

Service

Service

ORCA

ORCA

ORCA

ORCA

ORCA

ORCA
PhySh is thought to be the end user shell for physicists.

- It is an extendible glue interface among different services (already present or to be coded).

- The user’s interface is modeled as a virtual file system interface.

WebService based architecture

Python

IGUANA Client

Python client

Shell client

Web Client

Other XML_RPC or SOAP Client

PHYSH Virtual Filesystem Interface

Clarens Web Services

SCRAM (local)

Job Submission (local)

PhEDEx

PubDB

Pool

RefDB

Job Submission

Castor

SCRAM (remote)

...
Interactive Analysis/Inspection/Debugging: First version for DST Visualization

List of containers in the event: updated for each event. Name and version for RecCollection.

Cobra event browser: graphical structure of event

Formatted text information for selected RecCollection
Project Phases

Computing support for Physics TDR, -> Spring '06
- Core software framework, large scale production & analysis

Cosmic Challenge (Autumn '05 -> Spring '06)
- First test of data-taking workflows
- Data management, non-event data handling

Service Challenges (2005 - 06)
- Exercise computing services together with WLCG + centres
- System scale: 50% of single experiment's needs in 2007

- Ensure readiness of software + computing systems for data
- 10M's of events through the entire system (incl. T2)

Commissioning of computing system (2006 - 2009)
- Steady ramp up of computing system to full-lumi running.