First Results with the Calice ECAL Prototype

G.Gaycken

Laboratoire Leprince-Ringuet - Polytechnique France

LCWS March 2005

Outline

1 Cosmics

- Calibration
- Coherent Noise

2 Electron Test Beam

Outline

- Calibration
- Coherent Noise
- 2 Electron Test Beam

Cosmics

- 15 days continuous data taking.
- $\blacksquare \sim 1$ million events

Event Display - Muon

G.Gaycken

Selection - Muons

Analysis:

- Pedestals/Noise are slowly adjusted.
- Signal selection:

$$\bullet S/\bar{N} > 5$$

2 layers with hits:

 $\Delta x, \Delta y \leq 1$ pad

Selection - Muons

Analysis:

- Pedestals/Noise are slowly adjusted.
- Signal selection:

$$S/\bar{N} > 5$$

2 layers with hits:

 $\Delta x, \Delta y \leq 1$ pad

 \rightarrow Noise $\sim 6\,{\rm ADC}$

Selection - Muons

Analysis:

- Pedestals/Noise are slowly adjusted.
- Signal selection:
 - $S/\bar{N} > 5$
 - 2 layers with hits: $\Delta x, \Delta y \leq 1$ pad
- ightarrow Noise $\sim 6\,\mathrm{ADC}$
- \rightarrow Mip signal \sim 47 ADC $(S/N \sim 8)$

Signal Distribution

Signal Distribution

Calibration

Strategy:

- Use position of mip peak
- Fit function: Landau * Gaussian

Calibration

Calibration

Calibration - Error

 \rightarrow Calibration error <1% with 1 million cosmics.

Calibration - Error

 \rightarrow Calibration error <1% with 1 million cosmics.

Correlation between Neighbour Pads

(Similar correlation between pads of different half wafers / wafers.)

G.Gaycken

Correlation between Neighbour Pads

(Similar correlation between pads of different half wafers / wafers.)

Correlation between Neighbour Pads

(Similar correlation between pads of different half wafers / wafers.)

- 15 days $\rightarrow 10^6 events$
- Signal (S/N > 5) excluded.

- 15 days $\rightarrow 10^6 events$
- Signal (*S*/*N* > 5) excluded.

 \rightarrow Coherent noise per half wafer $\lesssim 2 \,\mathrm{ADC}$

G.Gaycken

First Results with the Calice ECAL Prototype

LCWS March 2005

Electron Test Beam

- Electrons 1...6 GeV
- Angles 0 °, 10 °, 20 °, 30 °
- Various x/y impact positions.
 (Wafer border/centre, ...

 ${\rightarrow}25$ Mevents (230 GB) in 2 weeks (${\rightarrow}{\sim}$ 30 Hz)

Drift Chambers courtesy of Tsukuba. Many Thanks to K. Kawagoe and Y. Tamura!

Electron Test Beam

- Electrons 1...6 GeV
- Angles 0°, 10°, 20°, 30°
- Various x/y impact positions.
 (Wafer border/centre, .

```
{\rightarrow}25 Mevents (230 GB) in 2 weeks ({\rightarrow}{\sim} 30 Hz)
```


Drift Chambers courtesy of **Tsukuba**. Many Thanks to **K. Kawagoe** and **Y. Tamura**!

G.Gaycken

Event display - Electron $2\,{\rm GeV}$

Event display - Two Electrons $2\,{\rm GeV}$

Mean Signal per Layer

Mean Signal per Layer

Total Energy vs Position

Summary

- Small dispersion between pads ($\sim 2 \, \mathrm{ADC}$)
- $\blacksquare~1$ million cosmics \rightarrow calibration error <1%
- Coherent noise is small ($\sim 2 \, \mathrm{ADC}$)
- First electron test beam results.
 (230 GB of data to be analysed in detail → room for people to join.)

ECAL standalone $(+ 2 \times 0.9\lambda_l)$ tungsten blocks) e^- : 6 GeV to ~ 25 GeV (5 energy points **min.**), 3 angles (2 energy points **min**.) π : ~ 1 GeV . . . ~ 65 GeV p: $\sim 1 \,\mathrm{GeV} \dots 120 \,\mathrm{GeV}$ ■ A-HCAL + ECAL (+tail catcher) D-HCAL + ECAL (+tail catcher)

ECAL standalone $(+ 2 \times 0.9\lambda_l)$ tungsten blocks) e^- : 6 GeV to ~ 25 GeV (5 energy points **min.**), 3 angles (2 energy points **min**.) π : ~ 1 GeV ... ~ 65 GeV p: $\sim 1 \,\mathrm{GeV} \dots 120 \,\mathrm{GeV}$ ■ A-HCAL + ECAL (+tail catcher) π : ~ 1 GeV . . . ~ 65 GeV (15 energy points), 3 angles (5 energy points) p: $\sim 1 \,\text{GeV} \dots \sim 120 \,\text{GeV}$ (5 energy points), 3 angles (5 energy points) μ : for A-HCAL calibration

D-HCAL + ECAL (+tail catcher)

ECAL standalone $(+ 2 \times 0.9\lambda_l)$ tungsten blocks) e^- : 6 GeV to ~ 25 GeV (5 energy points **min.**), 3 angles (2 energy points **min**.) π : ~ 1 GeV ... ~ 65 GeV p: $\sim 1 \,\mathrm{GeV} \dots 120 \,\mathrm{GeV}$ A-HCAL + ECAL (+tail catcher) π : ~ 1 GeV . . . ~ 65 GeV (15 energy points), 3 angles (5 energy points) p: $\sim 1 \,\text{GeV} \dots \sim 120 \,\text{GeV}$ (5 energy points), 3 angles (5 energy points) μ : for A-HCAL calibration

D-HCAL + ECAL (+tail catcher)

. . .

ECAL standalone $(+ 2 \times 0.9\lambda_l)$ tungsten blocks) e^- : 6 GeV to ~ 25 GeV (5 energy points **min.**), 3 angles (2 energy points **min**.) π : ~ 1 GeV ... ~ 65 GeV p: $\sim 1 \,\mathrm{GeV} \dots 120 \,\mathrm{GeV}$ A-HCAL + ECAL (+tail catcher) π : ~ 1 GeV . . . ~ 65 GeV (15 energy points), 3 angles (5 energy points) p: $\sim 1 \,\text{GeV} \dots \sim 120 \,\text{GeV}$ (5 energy points), 3 angles (5 energy points) μ : for A-HCAL calibration

D-HCAL + ECAL (+tail catcher)

Per configuration 10^6 events \rightarrow $O(10^8)$ events

. . .

Schedule - Calice Test Beam Program

- \blacksquare MTBF @ FNAL (now): 0.6 ${\rm sec}$ spill / 10 ${\rm sec},$ 90% duty cycle
- Minimum program and optimal running conditions.

DAQ limitations: continuous data taking rate 100 $\rm Hz,$ maximum rate $1\,\rm kHz$ for 2000 events then 20 $\rm sec$ dead time.

Schedule - Calice Test Beam Program

- \blacksquare MTBF @ FNAL (soon): $5\,{\rm sec}$ spill / $120\,{\rm sec}$, 90% duty cycle
- Minimum program and optimal running conditions.

DAQ limitations: continuous data taking rate $100\,{\rm Hz},$ maximum rate $1\,{\rm kHz}$ for 2000 events then 20 ${\rm sec}$ dead time.

- Univ. of Tsukuba and Kobe for providing the drift chambers, and in particularly **K. Kawagoe** and **Y. Tamura** for the installation of the latter.
 - DESY for the test beam infrastructure and in particular **N. Meyners** for copious on site help. Last but not least, the **A-HCAL group** in particular for doing $\sim 30\%$ of the shifts.

■ 3% difference Even/Odd.

(Pads are calibrated)

(Pads are calibrated)

■ 3% difference Even/Odd.

(Pads are calibrated)

- 3% difference Even/Odd.
- X₀ between layers: (Geant4, structure 1)
 - even \rightarrow odd: 0.40 X_0
 - odd \rightarrow even: 0.44 X_0

(Pads are calibrated)

(Pads are calibrated)