Documents, Beams and the Americans

José Repond Argonne National Laboratory

International Linear Collider Workshop Stanford University 18 – 22 March, 2005

Documents

Written at Argonne

on September 23, 2004

Contributions by many members

of the

Worldwide Calorimeter Test Beam Working Group (WWCTBWG)

Submitted to FNAL management

on February 22, 2005

FNAL TRI 2291

International Linear Collider Calorimeter/Muon Detector Test Beam Program (A Planning Document for Use of Meson Test Beam Facility at Fermilab)

February 22, 2005

J. C. Brient and J. Yu

For the ILC Calorimeter Test Beam Group

Abstract

The linear collider requires a detector with excellent performance to fully exploit its physics potential. In particular, requirements from the measurement of hadronic jet energies indicate a goal of developing the calorimeter with an unprecedented jet energy resolution of 30%/VE or better. In order to meet this challenge, novel technologies and reconstruction techniques are being developed, which need to be tested with particle beams. The recent decision by the International Technology Recommendation Panel (ITRP) concerning the linear collider accelerator technology imposes a time scale of at most a few years for the basic detector design choices. A vigorous test beam program over the next few years is necessary to provide a solid basis for these decisions. In this regard, the International Linear Collider Calorimeter and Muon Detector Test Beam Group submit this planning document to Fermilab. The main goals of the test beam program outlined in this document are to evaluate the different choices of technologies proposed for the calorimeter and to understand, validate and improve the Monte Carlo modeling and simulation of hadronic showers. This document contains a description of fourteen distinct calorimeter and muon detector/tail-catcher groups and their requirements for specific test beam resources. This planning document also lays out time scales and institutional responsibilities for the proposed test beam program. It provides plans for the users of the Fermilab Meson Test Beam Facility, and needs for upgrades to particle energy ranges and intensities, and associated engineering and computing support services.

Abstract

I. PROT	PHYSICS JU OT YPES FOR TH	STIFICATION	FOR	TESTING	CALORIMETER	3
FROI	OT THES FOR TH	E LINEAR COLL	IDER DE	TECTOR		
II.	CALORIMETER	TECHNOLOGIE	S TO BE	TESTED		6
III.	PROPOSED TES	T PROGRAM				12
IV.	PERSONNEL AN	ND INSTITUTION	1S			15
V.	REQUIREMENT	S: BEAM COMPO	OSITION	, ENERGIES,	RATES	17
VI.	REQUIREMENT	S: FLOOR SPACE	e and in	IFRASTRUCT	TURE	19
VII.	RESPONSIBILIT	Y BY INSTITUT	IONS - N	ON-FERMILA	AB	20
VIII.	RESPONSIBILIT	TIES BY INSTITU	TION - F	ERMILAB		21
	8.1 Fermilab A	Accelerator Divisio	on			
	8.2 Fermilab	Computing Physics	s Division	L		
	8.3 Fermilab	Particle Physics D	ivision			
	8.4 Fermilab]	ES&H Section				
IX.	ACCESS TO DA	TA				23
X.	Bibliography					24

Planning document

25 pages

Provides overview of testbeam plans for the LC calorimeter

To be followed by concise MoUs for individual tests

Includes 11 projects

Calorimeter	Project	Lead institution	
ECAL	Silicon-Tungsten (CALICE)	LLR	
	Silicon-Tungsten (US)	SLAC, Oregon	
	Scintillator-Tungsten	Shinshu	
	Scintillator-Tungsten	Colorado	
	Scintillator-Silicon-Tungsten	Kansas	
	Scintillator-Silicon-Lead	Padova	
HCAL	Scintillator-Steel	DESY	
	RPC-Steel	ITEP, ANL	
	GEM-Steel	UTA	
Muon-detectors/tail catcher	Scintillator-Steel	DESY/FNAL/NIU	
	RPC-Steel	Frascati	

28 institutions from 3 regions

Timetable

	2005 B	2006 A	2006 B	2007 A	2007 B	2008 A
CALICE ECAL	x					
Other ECALs			x	x		
AnalogHCAL	x	x	x			
Digital HCALs			x	x	x	
Combined tests	x	x	x	x	x	х

Generic beam requests

Particle	Energy range
Electrons	3 – 20 GeV → 1 – 20 GeV
Pions	3 – 66 GeV → 1 – 66 GeV
Protons	3 – 66 GeV, 120 GeV
Muons	3 – 20 GeV, momentum selected
Muons	Not momentum selected

Both polarities Rates in part not to exceed 100 Hz

Duty cycle

Limits in DAQ (CALICE ECAL) Recharge time of RPCs

Limit rates to 100 Hz

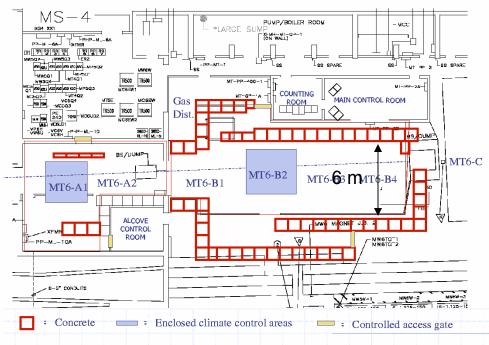
Request total of 10⁸ events

Different particles, energies, angles, configurations

Time in test beam = (Number of events)/Rate*(duty cycle)

Assume 1% duty cycle

Time in test beam $\rightarrow 10^8$ s or 3 years corresponding to >10 years of data taking


Minimum duty cycle of 5% requested

Beams

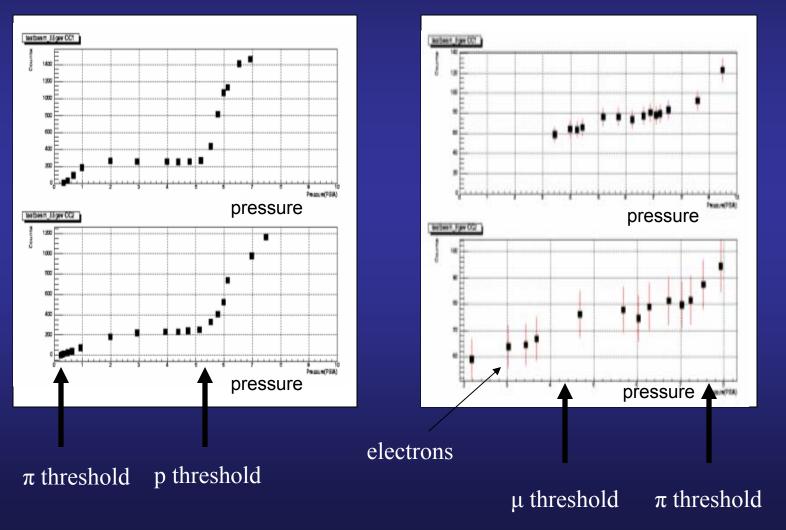
Report from FNAL Based on talk by E Ramberg from March 14, 2005 See <u>http://nicadd.niu.edu/calice/</u> for more details

Meson Test Beam Facility

MT6 Test Beam User Areas

Beam from Main Injector

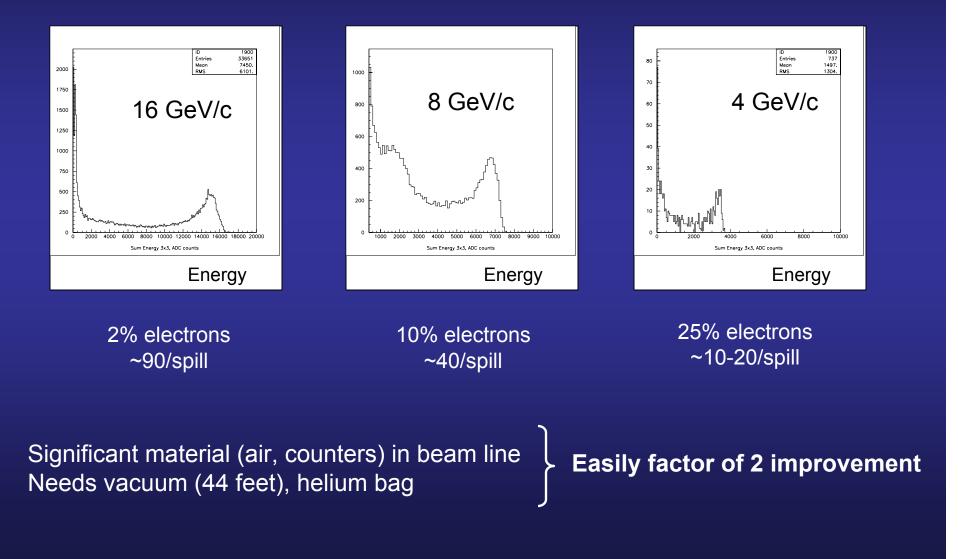
Proton Mode


120 GeV protons 200,000 p/spill maximum Low rates possible

Secondary mode

Target upstreams Secondary particles w/ p<66 GeV/c 40,000 particles/spill maximum Lowest stable operation at 8 GeV/c

Measurements with Čerenkov counters


66 GeV/c

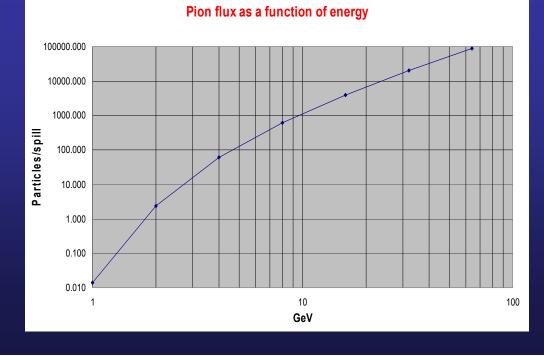
8 GeV/c

Electrons at MBTF

Measurement with BTeV EMCAL prototype

Other limitations

Duty cycle


Past operation: 10 spills of 0.6 s per minute From April on: 1 spill of 4.0 s per 2 minute

Low energy π

Length of beam line (400 m) reduces π flux at momenta below 4 GeV/c

Need to investigate possibility to modify beam line for higher rates (safety issue)

The Americans

Overview of American testbeam needs for calorimetry

Project	Institutions	Earliest test beam needed
Silicon-Tungsten ECAL	SLAC, Oregon, BNL	1/2007
Scintillator-Tungsten ECAL	Colorado	
GEM-Steel DHCAL	FNAL,UTA, Washington	4/2007
RPC-Steel DHCAL	ANL Boston, Chicago, FNAL, Iowa	1/2007
Dual readout HCAL	Iowa State,Texas Tech, UC San Diego	
Muon-tracker/tail catcher	FNAL, NIU	3/2006