

Damping Ring Design Overview

Kwang-Je Kim

2005 International Linear Collider Workshop Stanford Linear Accelerator Center, Stanford, CA

March 18-22, 2005

Argonne National Laboratory

A U.S. Department of Energy Office of Science Laboratory Operated by The University of Chicago

US-ILC Damping Meeting

- Keeping the momentum from ILC-USA @SLAC and ILC-KEK meetings
- Biweekly meeting with convenient teleconference format; VGs readily accessible from Andy's web page
- Initiated by A. Wolski, together with G. Dugan, G. Gollin, and KJK
- Attended by LBNL, SLAC, ANL, FNAL, Cornell, and a host of university groups
- This talk is largely based on material from the US-ILC meetings. I am grateful to the participants, especially Louis Emery and Andy Wolski, and those who provided me additional VGs, Y. Cai, G. Gollin, G. Dugan, M. Ross.

Requirements for ILC Damping Ring

- Compress 1 ms linac bunch train in to a "reasonable size" ring
 - Fast kicker
- 2820 bunches, 2×10¹⁰ electrons or positrons per bunch, bunch length= 6 mm
 - instabilities
- Damping of γε_{x,y}= 10⁻² m-rad positron beams to (γε_H, γε_v)=(8 × 10⁻⁶,2 × 10⁻⁶) m-rad
 - Low emittance
- Cycle time 0.2 sec $\rightarrow \tau$ =27 ms
 - Damping wiggler
- Dynamic aperture ≥ 10 σ
 - Injection loss < 1 %

Damping Ring Topics

- Lattice design and optimization
 - TME or FODO
- Dynamic aperture
- Automatic lattice design
- Space charge tune shift
 - Coupling bump
- Collective effects
 - Electron cloud, fast ion \rightarrow vacuum vessel and level
- Novel schemes
- Tracking to determine injection efficiency
- Error tolerance in lattice and wiggler
- Wiggler technology
- Kicker R&D
- And many more!

ILC Lattice Design and Optimization

- TME-based; smaller ε , α_p
 - lower V_{rf}, shorter wiggler
 - Lower Z_{th} , Smaller DA (6 σ , larger injection loss)
 - L. Emery, Standford thesis (Aug. 1990)
 - P. Emma and T. Raubenheimer, PRSTAB (2001)
 - A. Xiao, et. al., Fermilab-TM-2272-AD-TD (Sept. 2004)
- FODO-based; larger ε, α_p
 - Higher V_{rf}, longer wiggler
 - Higher Z_{th} , larger DA (10 σ , smaller injection loss)
 - Y. Cai, talk at US-ILC
 - A. Wolski, LBNL-57045 (Feb., 2005)

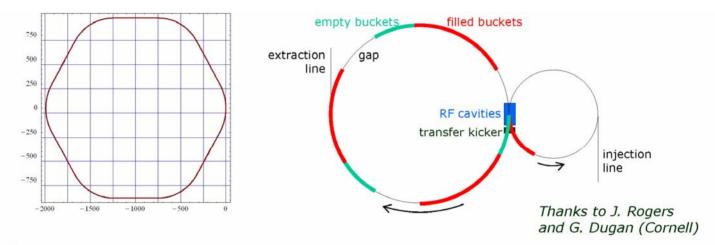
Office of Science

U.S. Department

Some ILC Damping Ring Designs

Parameters	TESLA DB	SLAC DB	LBL (DB)	ANL-FNAL Circular
	(W. Decking)	(Y. Cai)	(A. Wolski)	(A. Xiao, L. Emery)
Energy E(Gev)	5	5	5	5.0
Circumference (m)	17,000	17,014	15,815	6114
Horizontal emittance (nm)	0.50	0.62	0.715	0.8
Damping time (ms)	28	27	27	27
Tunes, v_x, v_y, v_s	76.31, 41.18, 0.071	83.73, 83.65, 0.072	75.78, 76.41, 0.41	56.58,41.62,0.0348
Momentum compaction α_c	1.22x10⁻⁴	1.11x10 ⁻⁴	5.6x10 ⁻⁴	1.42x10 ⁻⁴
Bunch length σ_z (mm)	6.04	5.90	6.0	6
Energy spread σ _e /E	1.29x10 ⁻³	1.30x10 ⁻³	1.63x10 ⁻³	1.3x10 ⁻³
Chromaticity ξ_x , ξ_y	-125,-62.5	-105.27, -106.70	-90.98, -94.86	-74.4,-55.4
Energy loss per turn (MeV)	20.4	21.0	19.75	7.73
Cavity Voltage (MV)	50	50	312	27

6


THE ANL-FNAL 6 km Ring (A. Xiao, L. Emery,..)

5 GeV, 6 km lattice (six-fold symmetry).

Injection/extraction scheme uses 6 ns rise-time, 60 ns fall-time kicker.

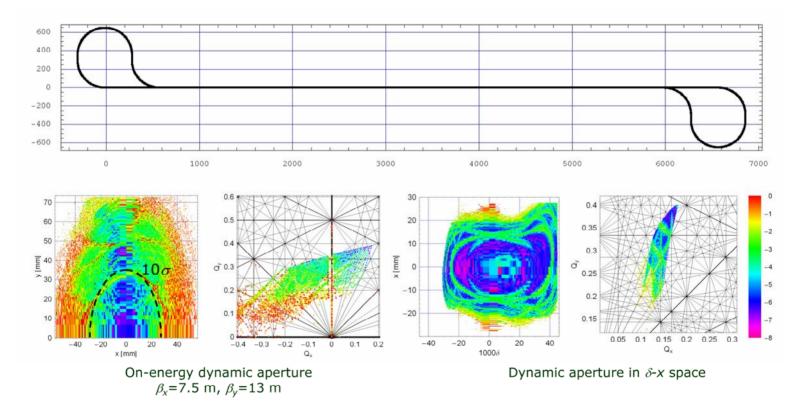
Lattice documented in FERMILAB-TM-2272-AD-TD

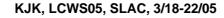
 $http://www.hep.uiuc.edu/home/g-gollin/linear_collider/Fermilab_damping_ring_report.pdf$

Strengths:

- Relatively small circumference reduces space-charge effects.
- Reduced amount of wiggler needed to achieve required damping rate.
- Injection/extraction scheme allows use of slow fall-time kicker.

Weaknesses:


- Higher average current makes electron-cloud and ion effects more difficult.



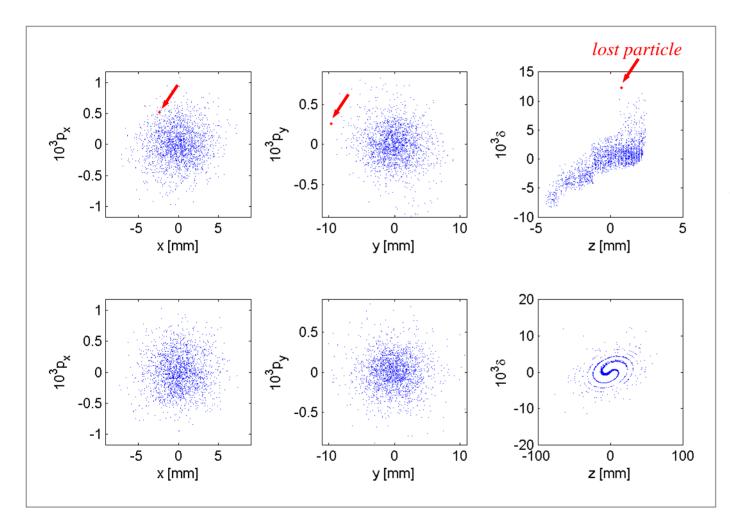
LBNL 16 km Dogbone (A. Wolski)

16 km dogbone lattice with FODO arcs (LBNL design) meets specifications for emittance, damping time etc., and has dynamic aperture > 10σ (for 0.01 m normalized injected emittance).

Office of Science U.S. Department of Energy

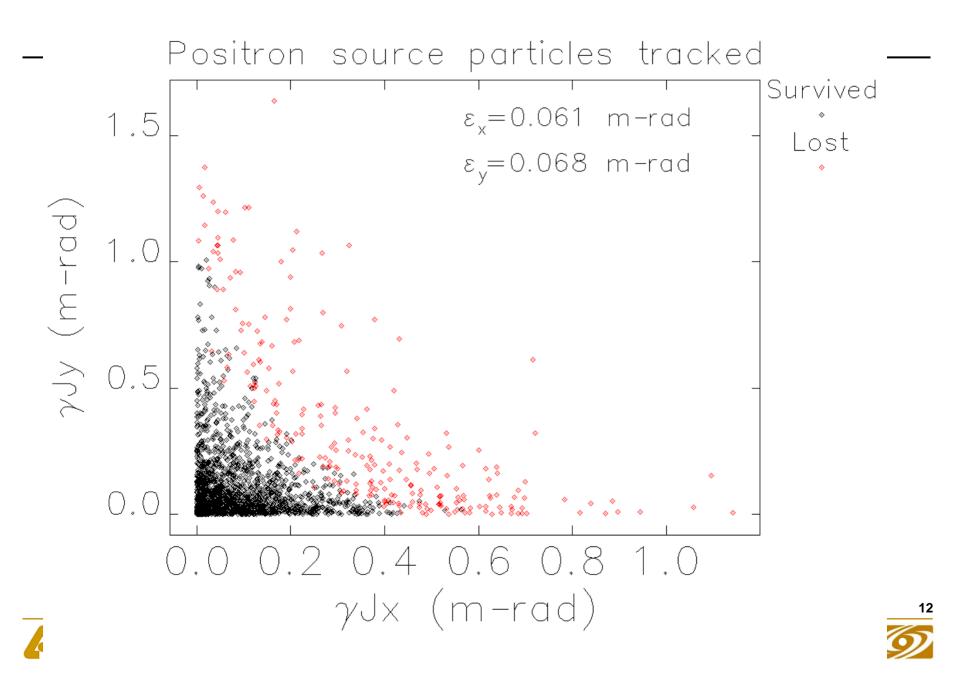
Automated generation of lattice (L. Emery)

- Final ILC damping ring design will take many iteration → Automatic matching procedure will expedite the process
- Identify 12 primary parameters:
 - $N_{supereriod}$, v_x , v_y
 - Arc cell: Φ_x , Φ_y , L, L_B, N_{cell}
 - Wiggler cell: Φ_x , Φ_y , L_w, B_w, N_{poles}
- Automatic matching: templates for cells and ring written
- Using a FODO-cell based circular ring as an example
- Work in progress


Injection Loss

- Use positron source particle distribution from Y. Batykin (SLAC)
 - Normalized emittance ($\gamma\epsilon$) is 0.06 m-rad, but particles at γJ_x or γJ_y up to 1 m-rad occur
 - Particles at high number of σ's could be collimated without significantly harming total charge.
- Positron loss about 1% for LBNL FODO (A. Wolski)
- Positron loss about 10% for ANL-FNAL TME (A. Xiao, L. Emery)
- Loading power 2 kW with at 1% loss. Compare this the injection loss at the APS; 2 w every 8 hour. The positron beams must be collimated early in the source chain to reduce the loss to an acceptable level

Tracking a 'realistic' beam shows very small losses (A. Wolski)


Injected beam phase space. Simulated distribution of 1960 particles from positron source. (Y. Batygin, SLAC)

Phase space after 500 turns.

500 turns is approximately1 damping time.1959 particles survived.(A. Wolski, LBNL)

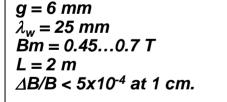
Linear Damping System?

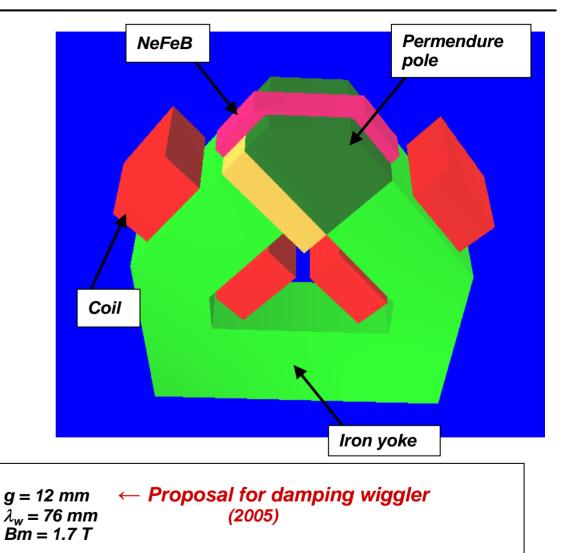
- V. Telnov
- N.S. Dikansky, A.A. Mikhailichenko, H. Braun, Zimmermann,...
- Linear cells, each cell consisting of a wiggler and a linac section
- Report by G. Dugan: e.g., positron damping at 23 GeV
 - L=18 km, λ_u =11 cm, B=10 T
 - $\epsilon_x = 8x10-6, \sigma_{\delta} = 6.6x10-3$
 - $dP/dz=6.6 \text{ kW/m}, P_T=30 \text{ MW}!$
- Somewhat challenging

13

Wiggler Design Issues

- Parameters:
 - ANL-FNAL TME: L=77m, λ u=28 cm, B=2.2 T
 - SLAC-LBNL FODO: L=441 m, λu =40 cm, B=1.6 T
- Wiggle05, INFN, Frascati, Feb. 21-22,2005
- Nonlinear tuneshifts
 - Horizontal...Cure by poleshaping (DA Φ NE)
 - Vertical ... Octupole-like term is significant but the effect is less than that due to the chromaticity sextupoles.
- "New" magnet concepts
 - Wedge pole PM(P. Vobly, BINP)
 - PM assisted EM(K. Halbach, BINP, KAERI)
 - Super-ferric (A. Temnykh, CESR-c)
 - Superconducting (R. Rossmanith, ANKA)
- Issues: specification of wiggler tolerances




Electromagnet wiggler

Usual electromagnet wigglers can not be used as damping wigglers because it is difficult to achieve high field with small period.

However combined permanent/electromagnet devices (equipotential bus wigglers, K.Halbach) can show good damping parameters.

FEL undulator for KAERI (1999).

- SLAC-LBNL-LLNL...Shock-wave line pulser, stripline kicker system for ATF-KEK extraction (M. Ross, A. Krasnykh,..)
- FNAL-UIUC...6-ns rise- and 300-ns fall-time, "Fourier" kicker study (G. Gollin,..), stripline kicker testing at A0-FNAL
- Cornell...RF separation scheme, fast ionization dynistor (FID) pulser (3.5 ns) (G. Dugan, D. Rice,..)

Office of Science

U.S. Department

16