## Measuring the Beam Energy with Radiative Return Events

## Klaus Mönig





### (Master thesis of Arnd Hinze)

#### Introduction

- The beam energy is needed on the  $10^{-4}$  level for mass determinations at the ILC (Higgs, top, SUSY...)
- The beam-energy measurement will mainly come from a magnetic spectrometer
- The absolute calibration of the spectrometer is difficult
- In addition the average beam energy is not necessarily equal to the luminosity weighted centre of mass energy  $\rightarrow$  next slide
- It would thus be useful to have a method to determine the beam energy from annihilation data
- Such a method exists: radiative return events  $e^+e^- \rightarrow Z\gamma \rightarrow f\bar{f}\gamma$
- The validity of this method was already proven at LEP

### **Energy Bias from the Kink-Instability**



- Disruption give a different weight to different parts of the bunch
- These effects make the luminosity weighted cms energy different from twice the beam energy



#### This effect is not visible in the Bhabha acolinearity!



### **Basic Idea of the Radiative Return Analysis**

- The Z-mass is known with very high precision from LEP
- assume only one photon is radiated  $\rightarrow \sqrt{s'}$  can be calculated from fermion angles only

$$\frac{\sqrt{s'}}{\sqrt{s}} = \sqrt{\frac{\sin\theta_1 + \sin\theta_2 + \sin(\theta_1 + \theta_2)}{\sin\theta_1 + \sin\theta_2 - \sin(\theta_1 + \theta_2)}}$$

- $-\,\gamma$  either along the beampipe or angle is measured
- this formula assumes that the fermion mass can be neglected

• Assume 
$$\sqrt{s'} = m_Z \Rightarrow \sqrt{s} = m_Z \sqrt{\frac{\sin \theta_1 + \sin \theta_2 - \sin(\theta_1 + \theta_2)}{\sin \theta_1 + \sin \theta_2 + \sin(\theta_1 + \theta_2)}}$$

 $\mathbf{f}_1$ 

 $\theta_1$ 

θ,



- $\bullet \, \sigma({\rm rad.\, ret.}) \sim 0.5 \, {\rm pb}$  scales approx. with 1/s
- detector efficiency  $(7^{\circ} \text{ cut}) \approx 90\%$
- $\bullet$  ideal beam with beamstrahlung and 0.2% Gaussian energy spread

## Fit method:

- $\chi^2$  fit of data to MC prediction with free normalisation
- MC prediction from linearisation around a default value:
  - two MC samples  $MC_{def}$  at  $\sqrt{s}_{def}$  and  $MC_{\Delta}$  at  $\sqrt{s}_{def} + \Delta\sqrt{s}$ -  $N_{pred}(\sqrt{s}) = \frac{\sqrt{s} - \sqrt{s}_{def}}{\Delta\sqrt{s}} (MC_{\Delta} - MC_{def})$
- easy to include all effects into fit
- $\bullet$  fit tested to be bias free in region  $\sqrt{s}_{\rm def} \pm \Delta \sqrt{s}$

#### Cuts:

• 
$$7^{\circ} < \theta_{1,2} < 183^{\circ}$$
 (detector acceptance)

•  $m_{\rm Z} - 5 \,{\rm GeV} < m(\mu^+\mu^-) < m_{\rm Z} + 5 \,{\rm GeV}$ 

### **Backgrounds**

 $\gamma\gamma$  background (e<sup>+</sup>e<sup>-</sup>  $\rightarrow$  e<sup>+</sup>e<sup>-</sup> $\mu^+\mu^-$ )

- very large cross section without cuts
- less than 10% background in fit range after  $m(\mu^+\mu^-)$  cut

## Zee:

- cross section similar to signal
- $\bullet$  after cut on visible electrons  $\sim 25\%$  background remains
- however kinematics similar to signal, so no problem

# WW,ZZ:

- ZZ already small, WW reduced by  $m(\mu^+\mu^-)$  cut
- $\bullet$  in the end  $\sim 1\%$  background

### Results

Fit to 100 fb<sup>-1</sup> including beam effects and background:  $\Delta\sqrt{s} = 47 \,\text{MeV} \qquad \left(\frac{\Delta\sqrt{s}}{\sqrt{s}} = 1.3 \cdot 10^{-4}\right)$ 

- $\bullet$  without beamstrahlung and energy spread  $\sim 10\%$  better
- little effect from background
- $\bullet$  slight improvement possible if 2D fit  $(\sqrt{s},\theta)$

#### **Energy dependence**



## **Systematics**

- Background: no effect for 20-30% background uncertainty
- Energy spread:  $\Delta\sqrt{s} = 10$  MeV if Gaussian energy spread is replaced by rectangular, no effect if 0.1% instead of 0.2%
- Beamstrahlung: method largely cancels errors from beamstrahlung determination
- Aspect ratio: LEP error  $\Delta \left(\frac{\delta R}{\delta L}\right) = \delta \tan \theta = 5 \cdot 10^{-4}$  $\Rightarrow \Delta \sqrt{s} = 160 \text{ MeV}$ 
  - $\blacksquare$  need about one order of magnitude better

#### Work to be done

- Possible larger statistics:
  - Bhabha scattering: clean, however diluted by t-channel contribution  $-e^+e^- \rightarrow \tau^+\tau^-$ : slight dilution from  $\tau$  decay angle,  $m(\tau^+\tau^-)$  against  $\gamma\gamma$  does not work because of missing neutrinos
  - $-e^+e^- \rightarrow q\bar{q}$ : mass effects significant (e.g. 5 GeV jet mass gives a 2.5 GeV shift in reconstructed  $\sqrt{s}$ )  $\Rightarrow$  large sensitivity to fragmentation and particle losses
- Global analysis:
  - beamstrahlung is correlated for the two beams (e.g. from z-position)
  - $-\operatorname{also}$  the kink instability is correlated for the two beams
  - both effects modify the acolinearity used in the beam spectrum and in the radiative return analysis
  - to understand the interplay of those effects a common analysis taking into account realistic beam effects is needed

#### Conclusions

- The centre of mass energy can be measured on the  $10^{-4}$  level from radiative return events.
- This is a high luminosity analysis, so relative measurements e.g. in a scan are needed from spectrometers.
- The length to radius ratio of the detector needs to be known to better than  $10^{-4}$  not to be limited by this effect.
- A global analysis of Bhabha acolinearity for beamstrahlung and radiative return events for the beam energy is needed to understand effects from beam-beam correlations.