

Geant4 status & plan and supports on LC simulation

Makoto Asai (SLAC) Mar.21, 2005 LCWS05 @ Stanford

Contents

- Highlights of Geant4 v7.0
 - Emphasis on use of LC simulation
- Development plan of 2005
 - Again, emphasis on use of LC simulation
- Supports on LC simulation
 - SLAC Geant4 team

Highlight features of v7.0

- Released on December 17th, 2004.
 - Patch-01 on February 23rd, 2005.
- First introduction of GFLASH.
 - Refinements on usability ongoing.
- G4PhysicsTableHelper class is introduced for granular storage/retrieval of physics tables.
- G4UnknownParticle, G4UnknownDecay and new G4PrimaryTransformer classes enable the use of exotic particles tracked in Geant4.
 - An example for sleption and R-hadron will be released at v7.1.
- Dedicated G4StepLimiter process now takes care of maximum step length defined in G4UserLimits.
 - At v7.1, G4UserLimits can be assigned to a region.

Highlight features of v7.0

• EM physics

- Added new utility class: G4EmCalculator, to access/calculate dedx, range, cross sections of EM processes.
- Ion Ionization
 - Decoupled **G4ionIonisation** process from proton ionisation, use alpha stopping power tables for simulation of ion ionisation.
 - Added G4ionEffectiveCharge class needed to ion physics.
- Added new process: positron annihilation to pion pair (G4eeToHadrons).
- Hadronic physics
 - Improvements in cross-sections

Highlight features of v7.0

- GDML is now fully supported for all CSG solids, some special solids (PCON, PGON) and Boolean solids.
- Allow consecutive corrections for stuck tracks in ComputeStep() up to 10 times before aborting the track.
- New example extended/runAndEvent/RE01
 - Derived from a sample code made for ILC
 - Demonstrates:
 - maintaining links between primaries, trajectories and hits
 - use of G4UnknownParticle

Highlights of 2005 developments

- We plan two releases this year
 - v7.1 end of June
 - v8.0 (or v7.2) middle of December
- Run, event, tracking, particle
 - Allow non-nominal masses for primary particles and pre-assigned decay products, and handle them with decay process
 - Merge concept of "envelope" to region
 - Scoring "detector" (in either tracking or parallel world)
 - Retrieval of particle properties from external source
- Material
 - Introduction of NIST data-bank for materials

Highlights of 2005 developments

• EM physics

- Introduction of Single Coulomb Scattering process for very thin object
- Upgrade of Photo Absorption Ionization model
- Implementation of a new model for Synchrotron Radiation
- Review and upgrade Transition Radiation models
- Introduction of atomic de-excitation in Photo Electric effect
- Hadronic physics
 - Bertini Cascade model
 - Extension to kaons and hyperons
 - CHIPS model
 - Neutrino interactions

Highlights of 2005 developments

• Geometry

- Prototype of a parallel navigator
 - E.g. a step can be limited on a surface of a volume in readout geometry
- Mixing of placements and parameterized volumes
- Generic twisted trapezoid shape with different endcaps
- Prototype of a generic tessellated BREP solid with flat surfaces
- New specific ellipsoid solid
- Visualization and graphics_reps
 - Support interoperability of the different visualization drivers
 - Visualization of readout geometry and region
 - Integrated visualization of field-lines
 - HepRepFile to DAWNFILE converter

Users workshop and tutorials

- Users workshop
 - November 3rd 5th, @Bordeaux
- Users workshop for Geant4 physics
 - Mid July @CERN (under discussion)
- Tutorials
 - May 25th 27th, @CERN
 - June 6th 7th, @Helsinki
 - @FNAL or @Brookhaven (under discussion)
 - Let us know about your needs
- CD image of previous SLAC tutorial material is available at http://geant4.slac.stanford.edu/

SLAC Geant4 team

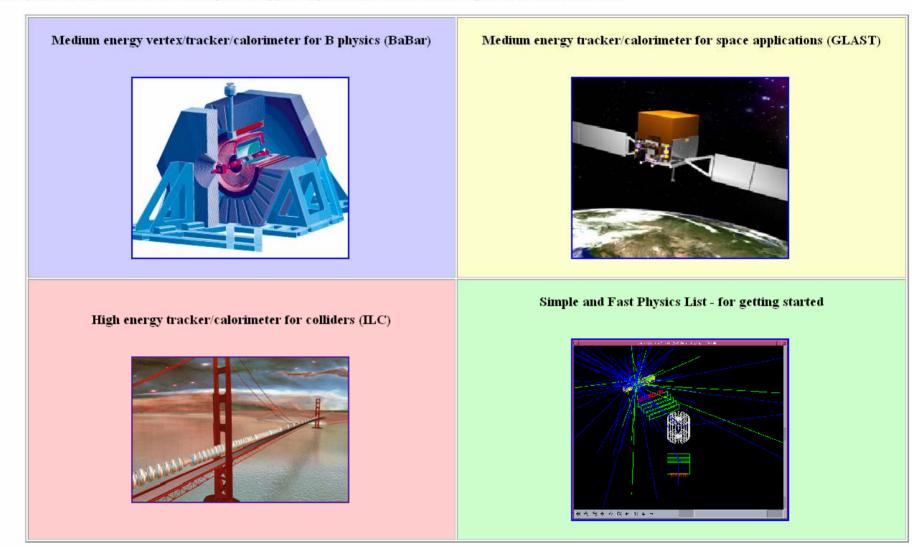
http://geant4.slac.stanford.edu/

- Covers most of the Geant4 categories
- Offers central maintenance and validation of a physics list most suitable for LC detector studies
- Is acting as a liaison for LC activities all over the world
 - Tell us any difficulties or requirements.
 - For example, the new example RE01 was originally made as a sample code for LC users.

Geant4 status & plan and supports on LC simulation, M. Asai (SLAC)

10/16

LCPhys physics list


- It is essential to use the common physics list to make a comparison between different detector models.
 - And, to be honest, it is the most delicate part in Geant4 to choose appropriate physics list.
- SLAC Geant4 team offers central maintenance and validation of a physics list that is most suitable for LC detector studies

http://geant4.slac.stanford.edu/

- Using Geant4 at SLAC
- Physics lists supported by SLAC

Available Physics Lists

Current physics lists include those developed to support experiments based at least in part at SLAC. These are:

More lists will be added in the near future:

- Micro-devices
- General physics list with model selection

Linear Collider Physics List Description

Last modified : Tue, 15 Mar 2005 18:36:05 GMT

Modular Physics List and Physics Constructors			
Boson Physics			
Lepton Physics			
Hadron Physics			
Ion Physics			
Decay Physics			

Modular Physics List and Physics Constructors

The linear collider physics list contains the best-guess selection of electromagnetic and hadronic physics processes required to run a linear collider detector simulation. The processes and models are organized using a modula physics list <u>LCPhysicsList.hh</u>, <u>LCPhysicsList.cc</u>, and a set of physics constructors which allow related physics processes, models and particles to be grouped together. The physics constructors handle:

- bosons: LCBosonPhysics.hh , LCBosonPhysics.cc ,
- leptons: LCLeptonPhysics.hh , LCLeptonPhysics.cc ,
- hadrons: LCHadronPhysics.hh , LCHadronPhysics.cc ,
- light ions: LCIonPhysics.hh , LCIonPhysics.cc ,
- decays: <u>LCDecayPhysics.hh</u> , <u>LCDecayPhysics.cc</u>

Boson Physics

The boson physics constructor LCBosonPhysics.hh, LCBosonPhysics.cc, defines the gamma and two fictitious particles, the Geantino and the ChargedGeantino.

Three processes are assigned to the gamma:

- conversion to e+ e- pairs
- Compton scattering
- · photo-electric effect

The Geantino is a chargeless, massless, completely non-interacting particle which can be used for geometry and tracking diagnostics. The ChargedGeantino is also massless and non-interacting, but has a charge so that it can tracked properly in a magnetic field. Aside from the transportation process, neither of these particles can be assigned an interaction process.

Lepton Physics

The lepton physics constructor LCLeptonPhysics.hh, LCLeptonPhysics.cc, defines electrons, muons and taus along with their corresponding neutrinos. The following processes are assigned to each particle:

- electron:
 - multiple scattering
 - electron ionization
 - electron bremsstrahlung
- positron:
 - multiple scattering
 - electron ionization

LCPhys physics list

 For more detail of LCPhys physics list, refer to the talk given by D. Wright (SLAC) at recent LCSim05 workshop

http://www-conf.slac.stanford.edu/lcsim05/

- We suggest you to use LCPhys at least for the baseline.
- We appreciate your feedbacks, especially the results of comparison with your beam test data.
- Given we are continuously maintaining it, please check the latest updates regularly.
 - And, use the latest version of Geant4.

A tip for EM calorimeter resolution

- Simulation of EM sampling calorimeter is sensitive to backward scattering of slow electrons from absorber.
 - Multiple scattering of electrons in shallow skin part of absorber plays the key role.
- To get the accurate resolution, limit the maximum step length for electrons in absorber.
 - Use G4UserLimits and G4StepLimiter classes.
 - Shortening range cut secondarily gives you the similar effect with more computing cost.
- For more detailed discussion, refer to the EM physics thread of Geant4 HyperNews.
 - Sample codes are available in example/extended/electromagnetic
- In v7.0p01, maximum step length should be much less affecting to simulation results of calorimeter resolution.
 - We are now verifying this.

Summary

- Highlights of most recent release Geant4 v7.0 and development plan of 2005 are introduced, putting emphasis on the use of LC simulation.
- Supports on LC simulation
 - SLAC Geant4 team
 - Offers central maintenance and validation of a physics list most suitable for LC detector studies
 - Is acting as a liaison for LC activities all over the world