Simulation Studies of GEM-DHCal

LCWS2005 at Stanford March 18 – 22, 2005 Jae Yu University of Texas at Arlington

- GEM Analog and Digital Performance Studies
- "Jet" Energy Resolution Study
- Initial Development of Particle Flow Algorithm
- Moving on
- Magnetic Field Impact Study
- Conclusions

*On behalf of the HEP group at UTA.

Introduction

- DHCAL: a solution for keeping the cost manageable for EFA
- Fine cell sizes are needed for efficient calorimeter cluster association with tracks and subsequent energy subtraction
- UTA focused on DHCAL using GEM for
 - Flexible geometrical design, using printed circuit pads
 - Cell sizes can be as fine a readout as in a GEM tracking chamber!
 - Gains, above 10^{3-4} , with spark probabilities per incident π less than 10^{-10}
 - Fast response
 - 40ns drift time for 3mm gap with ArCO₂
 - Relatively low HV
 - A few 100V per each GEM foil
 - Possibility for reasonable cost
 - 3M produces foils in large quantities (12"x500ft rolls)

3/21/2005

Mokka-based UTA GEM Simulation

- Use old version of Mokka as the primary simulation tool
 - Kept the same detector dimensions as TESLA TDR
 - Replaced the HCAL scintillation counters with GEM (18mm SS + 6.5mm GEM, 1cmx1cm cells)
- Single Pions used for performance studies
 - 5 100 GeV single pions
 - Analyzed them using ROOT
 - Compared the results to TDR analog as the benchmark
 - GEM Analog and Digital (w/ and w/o threshold)
 - ECal is always analog
- "Jet" Energy Resolution
- Two pion studies for PFA development

UTA Double GEM Geometry

GEM MIP Digital Threshold Efficiency

EM-HCAL Weighting Factor

- $E_{\text{Live}} = \Sigma E_{\text{EM}} + \mathcal{W} \Sigma \mathbf{G} E_{\text{HCAL}}$
- For analog:
 - Landau + Gaussian (L+G) fit is used to determine the mean values as a function of incident pion energy for EM and HAD
 - Define the range for single Gaussian (G) fit using the mean
 - Take the mean of the G-fit as central value
 - Choose the difference between G and L+G fit means as the systematic uncertainty
- For digital:
 - Gaussian for entire energy range is used to determine the mean
 - Fit in the range that corresponds to 15% of the peak
 - Choose the 15% G fit mean as the central value
 - Difference between the two G as the systematic uncertainty
- Obtained the relative weight $\boldsymbol{\mathcal{W}}$ using these mean values for EM only v/s HCAL only events
- Perform linear fit to Mean values as a function of incident pion energy
- Extract ratio of the slopes \rightarrow Weight factor \mathcal{W}
- $E = C^* E_{Live}$

GEM Analog & Digital Converted: 15 and 50 GeV π^-

GEM HCAL Responses and Resolutions

Jet Energy Resolution

Energy Flow Studies with two π^-

- Based on the studies of particles in jet events $e^+e^- \rightarrow t\bar{t} \rightarrow 6 jets \sqrt{s} = 1.0TeV$
- Pions $\langle E_{\pi} \rangle = 7.5$ GeV chosen for study
- Chose the distance between two pions $\Delta R=0.12$
- Develop an algorithm to subtract charged pion energies
- Use the density weighted method

$$d_{i} = \sum_{j=1, j \neq i}^{n} \frac{1}{R_{ij}} \quad \overline{\theta}_{i} = \frac{\sum_{j=1}^{n} d_{ij} \theta_{ij}}{\sum_{j=1}^{n} d_{ij}} \quad \overline{\phi}_{i} = \frac{\sum_{j=1}^{n} d_{ij} \phi_{ij}}{\sum_{j=1}^{n} d_{ij}}$$

3/21/2005

Half the mean separation

Two π Energy Flow Algorithm

- 1. Fit the tracks in TPC and extrapolate to Hadronic Calorimeter
- Find the maximum density cell in each HCAL layer
- 3. Associate cells with each π based on distance to the extrapolated track position
- . Compute cal-centroid using the max cells
- . Draw fixed size cones w/ radius half the distance between the two π cal-centroids
- 6. Compute the density weighted center of each π shower in each layer
- 7. Re-determine the cal-centroid using the density weighted center
- 8. Use the new centroid to add energy in the cone of half the distance of the two π

GEM DHCAL Studies at UTA

Energy in the cluster

3/21/2005

Energy Subtraction Performance

J. Yu

Moving On – LCIO Version of Mokka

- Conversion to LCIO incorporated version of Mokka 04.00 completed
 - Reproduction of previous results for verification w/ the GEM geometry
 - Will commit GEM geometry driver to the central DB for inclusion to the new Mokka releases and to the LCD concept studies
 - Develop analysis framework using LCIO
 - Continue onto developing universally usable PFA
 - Prepare for test beam geometry and data analysis

Moving On – SiD Simulation

- Inclusion of GEM into SiD simulation package
 - Both the detailed and mixture version of the GEM
 Geometry given to Norman for the inclusion
- Large number of SiD simulated events with GEM requested
 - 50k each of single pions in energy ranges of 5 150 GeV
 - 50k each of single electrons in ranges of 5 150 GeV
 - Two 7.5 GeV pions separated by $\Delta R{=}0.12$
 - For performance studies with SiD geometry

Magnetic Field Impact Study

- Concerns on possibly spiral of ionization electrons, causing unwanted signal spread and amplification due to the perpendicular E and B
- Have two UG students working on this subject
- Use Maxwell to generate field lines
 - Completed an initial implementation of prototype chamber structure implementation
 - 11 holes suffice for our purpose
 - First run on double GEM for E field completed
 - Some interesting features are being investigated
- Feed the output field map from Maxwell into Garfield 3/21/2005 GEM DHCAL Studies at UTA 17

Maxwell Geometry and E field

Top and bottom of a GEM foil (60 μ m) at 400V

Conclusions

- GEM-based DHCAL performance studies completed
- PFA-based jet energy resolution seems to be right on target
- Initial results of PFA study using two-single pion completed
 - Will need to make the algorithm more sophisticated
- Graduated two MS students (see <u>http://www-hep.uta.edu/</u> for theses)
 - Two undergraduate student currently working on this project
 - One MS student candidate in line ..
- Conversion to LCIO-based Mokka completed
 - GEM based test beam geometry implementation to occur soon
- Inclusion of GEM into SiD simulation package
- Impact of magnetic field to ionization electrons under study