Overview of Simulation and Reconstruction Tools in Europe

Frank Gaede, DESY
LCWS 2005, Stanford, CA
March 18-22 2005
Outline

- Introduction
- LCIO – data model & persistency
- Simulation
 - SIMDET – fast simulation
 - Mokka – geant4
 - BRAHMS – geant3 & reconstruction
- MARLIN – C++ reconstruction framework
- LCCD - conditions data toolkit
- Summary
Overview of software tools

- **Generator**
 - Java, C++, Fortran
 - Geant3, Geant4

- **Simulation**
 - Mokka
 - Java, C++, Fortran

- **Reconstruction**
 - Simdet
 - Java, C++, Fortran
 - Brahms
 - sim
 - Brahms
 - reco

- **Analysis**
 - Marlin
 - Java, C++, Fortran
 - LCCD
 - geometry/conditions

LCIO Persistency Framework
DESY and SLAC joined project:
- provide common basis for ILC software

Features:
- Java, C++ and f77 (!) API
- extensible data model for current and future simulation and testbeam studies
- user code separated from concrete data format
- no dependency on other frameworks

simple & lightweight

LCIO overview

now de facto standard for ILC software

SW-Architecture

Java API
C++ API
f77 API

JAS/AIDA
root
hbook

common API

LCIO Java implementation
LCIO C++ implementation

*.slcio files (SIO)
The LCEvent serves as a container of named collections of the various data types in LCIO (LCOBJECT subclasses).

The diagram illustrates the LCIO data model with a focus on the Run and Event structure. It shows the relationships between different classes such as LEvent, LCCollection, LObject, and various particle and event-specific classes like MCParticle, CalorimeterHit, TrackerHit, and Track. The model also includes a section on reconstruction, with classes like ReconstructedParticle, Cluster, and Track.
LCIO status-new features

- new release v01-04 (March 2005)
- features:
 - support and definition of 64bit time stamps
 - ns since 1/1/1970 (UTC)
 - multiple I/O streams in C++
 - LCGenericObjects in Java (user defined data objects)
 - subset collections
 - hold pointers/references to objects already existent in the event, e.g. LeptonCandidates from ReconstructedParticles
 - transient and persistent
 - if persistent, only pointers/references are stored in the file
 - files are downward compatible, LCIO 1.3 can read new files
- bug fixes
- improved documentation
LCIO on the web

- home: http://lcio.desy.de
- forum: http://forum.linearcollider.org
- bugs: http://bugs.freehep.org
Simulation tools

- **SIMDET**
 - parameterized fast Monte Carlo (f77)
 - hard coded geometry: TESLA TDR Detector

- **Brahms**
 - geant3 simulation (f77)
 - hard coded geometry: TESLA TDR Detector
 - full standalone reconstruction part (pflow)

- **Mokka** (see talk by H.Videau)
 - geant4 simulation (C++)
 - uses MySQL database for geometry definition
 - flexible geometry setup on subdetector basis using C++ drivers, e.g.
 - Tesla TDR Detector with new masks
 - CALICE testbeam prototypes

full simulation and reconstruction with Mokka & Brahms for Tesla/LDC!
LCCD handles access to conditions data transparently from
- conditions database (CondDBMySQL)
- LCIO files

Conditions Data:
- all data that is needed for analysis/reconstruction besides the actual event data
 - typically has lifetime/validity range longer than one event
 - can change on various timescales, e.g. seconds to years
 - need for versioning (tagging) (changing calibration constants)
 - also 'static' geometry description (channel mapping, positions,...)
ConditionsDBMySQL

- open source implementation of CondDB API
 - conditions data interface for LHC (Cern IT)
- developed by Lisbon Atlas group

features

- C++ interface to conditions database in MySQL
- data organized in folder/foldersets
- objects stored as BLOBs (binary large objects)
- tagging mechanism similar to CVS
- outperforms implementation based on Oracle

status

- no active development - but bug fixes

remark: first tests suggest that software runs stable

need extended tests before used in production environment
LCCD features

- Reading conditions data
 - from conditions database
 - for given tag
 - from simple LCIO file
 - (one set of constants)
 - from LCIO data stream
 - e.g. slow control data
 - from dedicated LCIO-DB file
 - has all constants for given tag

- Writing conditions data
 - as LCGenericObject collection
 - in folder (directory) structure
 - tagging

- Browsing the conditions database
 - through creation of LCIO files
 - vertically (all versions for timestamp)
 - horizontally (all versions for tag)
LCCD Status

- v00-02 released
- fairly complete functionality
- passes simple tests
- example/test code
- complete API documentation
- available via cvs web: http://ilcsoft.desy.de/lccd
- feedback welcome
- CALICE will use LCCD for testbeams
Marlin

Modular Analysis & Reconstruction for the Linear Collider

- modular C++ application framework for the analysis and reconstruction of LCIO data
- uses LCIO as transient data model
- software modules called Processors
- provides main program!
- provides simple user steering:
 - program flow (active processors)
 - user defined variables
 - per processor and global
 - input/output files
Marlin overview

- **core functionality**
 - **AIDAProcessor**
 - for easy creation of histograms, clouds, ntuples
 - **OutputProcessor**
 - **ConditionsProcessor**
 - read conditions transparently with LCCD
 - **OverlayProcessor**
 - event mixing (under development)
 - **MyProcessor**
 - simple example – serves as template for user code

Marlin serves as a framework for the distributed development of a full suite of reconstruction algorithms! It can also be used for small standalone analysis jobs.
Marlin users

- CALICE testbeam software
 - DigiSim (G.Lima)
 - Ganging and Calibration (R.Poeschl)
- Analysis software
 - LCLeptonFinder (J.Samson)
 - JetFinder (Th.Kuhl)
 - ThrustFinder (Th. Kraemer)
- Reconstruction software
 - wrapper for Brahms-Tracking code (S.Aplin)
 - clustering and pflow – SNARK in C++ (A.Raspereza)
 - clustering algorithms (Ch. Ainsley, G. Mavromanolakis)
- probably others ...

aim: have (at least one) complete set for standard reconstruction in C++ soon!

need common repository or web portal to provide entry point for users to download and configure their marlin application!
Marlin status

- v00-08 released
- ConditionsProcessor
- improved Makefiles
- improved processor parameters
- available via cvs web @
- new homepage: http://ilcsoft.desy.de/marlin
 (old download page obsolete!)
- improved documentation
- overview & API doc
Summary & Outlook

- fairly complete software chain exists for Tesla/LDC studies:
 - fast simulation - SIMDET
 - full simulation geant4/geant3 - Mokka/Brahms
 - reconstruction workhorse (Brahms) still f77
 - new C++ reconstruction framework (Marlin) under distributed development
 - conditions data toolkit – LCCD
 - Calice testbeam will exercise the software chain

- all tools use LCIO!

- still a lot of work to do:
 - have complete Marlin based reconstruction
 - geometry description for reconstruction
 - make tools more flexible (other detector concept studies)
 - investigate options for interoperability with other frameworks
 - geometry description /Java-C++ interfacing / conditions ...