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ECAL Design Requirements

e Optimal contribution to the reconstruction of multijet events:

— EXxcellent separation of v's from charged particles
Efficiency > 95% for energy flow

— Excellent linkage of ECAL with tracker (important for SiD)
— Good linkage of ECAL with HCAL
— Good reconstruction of wi, detection of neutral hadrons

— Reasonable EM energy resolution (< 15%/V'E)

Physics case: jet reconstruction important for many physics processes.

LCWS 05 2 19 March 05 — David Strom — UO



e Longitudinal Sampling, 30 layers needed for EM energy resolution

o X
%~ 20%%
X is the sampling in radiation length.

e Useful for K9 tracking, etc.

e Can tolerate small,
random inefficiency

See talks by Eckhard von Toerne
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Importance of Granularity

e Figure of merit for energy reconstruction is
max(Rys, 4d)
Rcal

where R,; is the Moliere radius, d is the detector pad size and R, IS
the inner radius of the calorimeter (factor of 4 somewhat arbitrary)
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e [ he costs of the calorimeters, coil, and muon system have

n
cost x R

where n is ~ 2 — 3.

e Thus a 10% increase in the Moliére radius of the calorimeter leads
to a > 20% increase in cost of the detector for constant fe.

e Conclusion: try and make the calorimeter as dense as possible
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Critical parameter: gap between tungsten layers.
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Calice 3mm gap with 1.7m TESLA radius gives
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Si-W Calorimeter Concept
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Silicon Wafers
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Layer Assembly

LCWS 05 4 19 March 05 — David Strom — UO



Silicon Concept

Front End

e Readout each wafer with a
single chip
e Bump bond chip to wafer

e [0 first order cost indepen-
dent of pixels /wafer
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e Hexagonal shape makes op-
timal use of Si wafer

e Channel count Ilimited by
power consumption and area
of front end chip

&)
Rededededodototececsccs:
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RS

6 inch ¢ 152mm) Dia Wafer

e May want different pad lay-
out in forward region
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Critical parameter: minimum space between tungsten layers.

Multi-Layer G-10 Heat path

Capacitor
T Readout Chip 2.5mm
ungsten // Bump Bonds
X

i i ~Tmm
. : %)

Bonds Insulation

\

Silicon Wafer

Evolving capacitor packaging may eliminate need for dimples.
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Can we get the heat out?

Back of the envelope calculation
of change in temperature:
e [ hermal Conductivity of W
alloy 120W/(K-m)
e T hermal Conductivity of Cu
400W/(K-m)

Need to reduce heat to below
100mW /wafer.
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Silicon Detector Design

e DC coupled detectors
(avoids bias resistor net-
WOrk)

e [ wo metal layers

e Keep Si design as simple as

. 300 um
possible to reduce cost a

e Cross talk looks small with
current electronics design

e Trace capacitances (up to
30pF) are bigger than the
5pF pixel capacitance

LCWS 05 11 19 March 05 — David Strom — UO



Ten Hamamatsu detectors are in hand
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Measurements on Silicon Detector Prototypes

Leakage Current Looks Fine:
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(10nA for 1us gives only 250 electrons noise)
NB: Neighboring pixels are not grounded.
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Expected contributions to detector capacitance:

e 5.7pF from pixel capacitance (Cgeom,)

e ~ 20pF for sum of trace capacitance and capacitance from other
traces connecting to other pixels. (Csiray)

e Pixels under the bump-bond array have additional stray capacitance
from probing and bonding pads (currently ~ 100pF)

Expected curves
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Mean stray capacitance measurement obtained from a fit to the CV
curve:

Expected 100kHz 1 MHz

23.0£ 0.2 pF 2141 pF 2241 pF

= Measurement agrees with expectation for 0.9 yum thick oxide
and 6pm wide traces (3.1 pF/cm).

Series resistance for 1um by 6 um

Expected (pure Al) Measured

47 Q2/cm (57 £2)Q2/cm
= Measurement slightly larger than nominal
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Impact of Detector Technology on Detector Design

= In a warm machine, exceptional pixels with large capacitance or series
resistance lead to degraded time tag measurements

e Small impact on tagging performance since bad channels can be de-
weighted in determining the average time of a track

= In a cold machine, exceptional pixels with large capacitance or series
resistance lead to a higher rate of noise events in buffers

e Could lead to inefficiency late in the bunch train due to buffer overflow
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LLocation of high resistance and capacitance pixels

A
=
A 4

a.) Longest trace ~ 10cm

b.) Radial trace ~ 7cm > \

C.) Congested area near
bump bond array

LCWS 05 19 19 March 05 — David Strom — UO



e For areas a and b fundamental limit to noise is given by (for e.g.
correlated double sampling)

KT _ 1
BNCp, ~ Ctoty |4~ 5 R~
(&

where Rs is the series resistance, C; and 7 is the shaping time of the
electronics.

e For m = 1us, Rs = 580%2 and Ci,+ = 40 pF this gives ~600 electrons
noise, which is not really a problem.

e \We can slightly improve noise performance by decreasing the trace
width, perhaps by a factor of 2, i.e.

ENCRS X \/E

where w is the trace width.
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e In region ¢, near the bump /\
bonding array, we will have a // ---------------
large number of traces crossing '\)*
a pixel. No series resistance, but \\ ______________________
amplifier FET noise similar: =mm) UEEEH AR N N / _____

ﬁiﬁﬁ§>ﬁﬁiﬁﬁjiiiiiZZ{;IZZZZ

Possible ways to decrease capacitance in region c:
e Move probing pads on to pixels.
e Decrease trace width in area near central pixels, here

ENCagmp ox w

e Use a long skinny chip (e.g. 100 um x 600 pm grid)
After these three measures, worst case capacitance is ~70 pF.
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Other more radical alternatives

e Polyimide (kapton) can be used instead of SiO, as insulator for
traces

e Oxide thickness to 5um possible.

e Minumum trace with probably 10um

e Could reduce stray capacitances by a factor of 2 or more

Hamamatsu does not currently provide metal-on-polyimide products,
but we could increase the thickness of the wafer and the SiO».

SINTEF (Norway) may be producing detectors based on 6 inch wafers
with metal-on-polyimide within the next year. ( Possible collaboration
with Brookhaven to produce masks.)
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Test Setup for Cosmics, Sources and Laser

e Modified probe station, allows
laser to be target on entire de-
tector

e IR microscope objective used
to focus laser to ~ 10 um spot

e Bias applied to backside of de-
tector using insulated chuck
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Test Setup — detector probing

e Contact made to test pads on
bump bonding array using an AC
probe

e Cables add ~ 20 pF of ad-
ditional capacitance, but noise
performance is somewhat better
than readout chip

o Use AMPTEK 250F preamp,
shapers with 7 ~ 1us and a dig-
itizing oscilloscope to mockup
expected electronics

e PC board with 1cm x 1 cm sil-
icon pad detector used for cos-
mic trigger visible under chuck
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Response of detectors to Cosmics
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Errors do not include ~ 10% calibration uncertainty (no source calibration)
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Response of Detectors to 60KeV Gamma’s from Am?241
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Possible ~ 1% wafer-wafer calibration?

Width of distributions corresponds to ~ 1000 electrons noise. Pixels under test are on outer edge of

wafer — includes larger series resistance contribution than cosmic data.
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Signal (MIPS)

Laser Studies

A= 1064 nm

IR penetrates into
wafer

Allows controlled

study of large and
small pulses
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Conclusions

e A narrow gap silicon—tungsten detector for LC physics is attractive

e First round of prototype silicon detectors perform as expected

e Detectors can be produced with workable values of stray capacitance
and series resistance
= some minor changes needed for cold design
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