A Swift and Slim Flavour Tagger exploiting the CMOS Sensor Technology

M.Winter, on behalf of

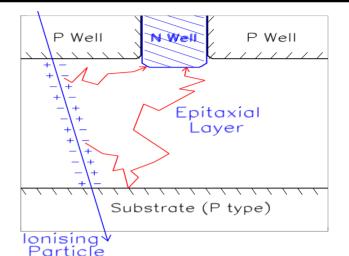
IReS: A.Besson, G. Claus, C. Colledani, M. Deveaux, M.Dorokhov, W. Dulinski, M.Goffe, D. Grandjean, F. Guilloux, S. Heini, A. Himmi, Ch. Hu, K.Jaaskelainen, M. Pellicioli, A.Shabetai, H. Souffi-Kebbati, M. Szelezniak, I. Valin

(M6/M8 DAPNIA: Y. Degerli, E. Delagnes, N. Fourches, P. Lutz, F.Orsini)

- Reminder: main features and advantages of CMOS sensors
- Demonstrated performances and fabrication processes explored
- Specific aspects of a VD based on CMOS sensors
- Status of the main R&D directions:
 - spatial resolution and ADC design
 - thinning procedure
 - radiation tolerance
 - read-out speed
- Summary and Outlook

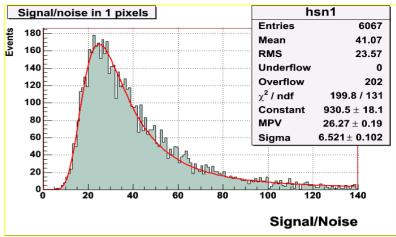
Main features and advantages of CMOS Sensors

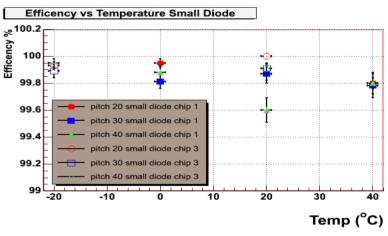
- Basic detection features:
 - Signal charge ∞ epitaxial thickness
 - (~ 80 e⁻/h pairs / μ m)
 - N wells bound to be charge collectors
 - Sensitive volume mostly unbiased (low resistivity Si)
- Main advantages w.r.t. other technologies:

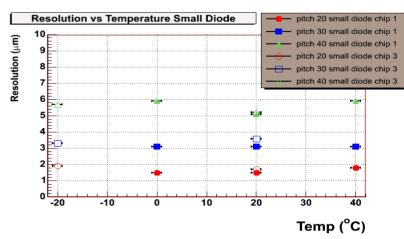


- System-on-Chip (SoC)
- Sensitive volume (~ epitaxial layer) is ~ 10 μm thick
 - \geq sensors may be thinned down to < 20 μ m)
- Standard, massive production, fabrication technology
 - ➤ cheap, fast turn-over

> Attractive trade off between granularity ($\sigma_{sp}, \sigma_{2hits}$), material budget, read-out speed and radiation tolerance

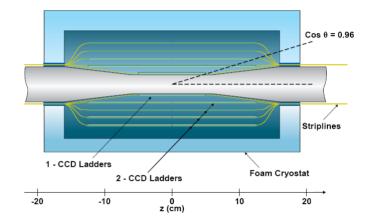

LCWS-05, SLAC, March 2005


CMOS Strasbourg - Saclay



Performances Achieved with MIMOSA chips

- 11 MIMOSA prototypes designed and fabricated since 1999
- 6 fabrication processes explored: AMS-0.6μm, AMI-0.35μm, AMS-0.35μm (opto and ordinary), IBM-0.25μm, TSMC-0.25μm
- Most chips tested with ~10² GeV/c π⁻ (CERN-SPS)
 - S/N ~ 20-30 (MPV) ⇒ε_{det} ~ 99-99.9 %
 - $\sigma_{sp} = 1.5-2.5 \mu m$ (20 μm pitch) ; $\sigma_{2hits} ≥ ~ 30 \mu m$
 - Rad. Tol. For ILC conditions checked with neutrons and X-Rays
 - Reticle size chip fabricated and working well (e.g. imager)
 - Assessment of 50 μm thinning under way
- Application to STAR, CBM, etc.



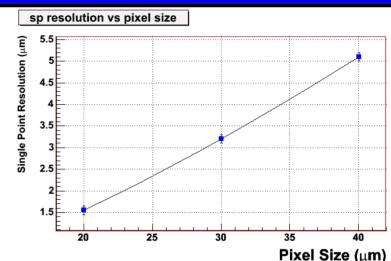
Specific aspects of the CMOS VD concept

- Overall design a priori very similar to TESLA TDR concept (CCD):
 - 5 cylindrical layer
 - R = 15 60 mm
 - surface ~ 3000 cm²

- Basic characteristics:
 - sensor thickness
 ~ 25-50 μm
 - total number of pixels
 ~ 300 millions

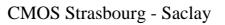
P_{diss}^{mean} ~≤ 25 W (full detector; 1/20 duty cycle)

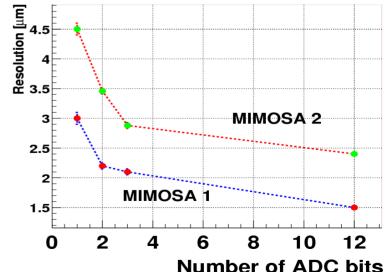
• operating T < 0° ?


Layer	Pitch	t _{r.o.}	N _{lad}	N _{pix}	P _{inst} diss	P mean
LO	20 µm	25 μs	24	30M	< 120 W	< 6 W
L1	25 µm	\leq 100 μ s	16	70M	< 80 W	< 4 W
L2	30 µm	200 μs	24	70M	< 100 W	< 5 W
L3	35 µm	200 μs	32	70M	< 110 W	< 5 W
L4	40 µm	200 μs	40	70M	< 125 W	< 6 W

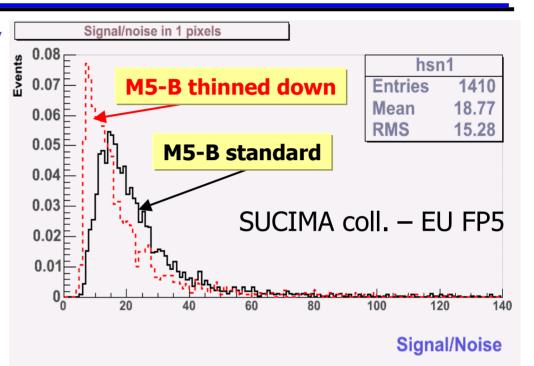
 Main R&D effort concentrated on achieving fast CMOS sensors: large data flow ⇒ signal processing (sparsification) integrated/chip

Spatial resolution vs digitisation


 Single point resolution of MIMOSA-9 as a function of pitch (~10² GeV/c π⁻ at CERN-SPS)
 > σ_{sp} ~ 1.5 μm (L0) ~ 4 μm (L4)


with 12 bit ADC encoding

- Effect of digitising MIMOSA-1 & -2 charges on 1,2 or 3 bits
 - > σ_{sp} ~ 2.5 μ m achievable after compact digitisation (3-5 bits)
- Design studies of fast ADC integrated at end of each column starting:
 - Baseline: 4 bits
 - Requirements:
 20-40 μm x 1 mm; > 10 MHz; < 500 μW

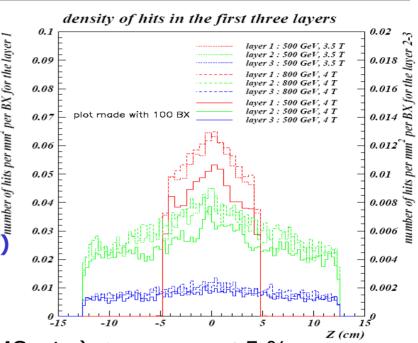

LCWS-05, SLAC, March 2005

The issue of thinning

- 120 µm sensor thickness repeatedly achieved on MIMOSA-5 wafers
 ⇒no performance loss observed (several chips tested)
- Goal: chip thickness ~ 25-50 μm (mounted on extra-light support)
- MIMOSA-5 chips thinned to 50 μm, outcome assessment under way via LBNL for STAR VD upgrade

- Substrate removal achieved with MIMOSA-5 (≥~ 15 µm thickness) for O(10 keV) electron detection (EB-CMOS) ⇒ detection efficiency drop observed (due to Q loss)
- Substrate removal is not (yet) the solution: optimal solution would be an etch stopper buried in the substrate at 25 μm depth
 - BUT: commercially not available today ⇒ under investigation

CMOS Strasbourg - Saclay


Constraints from beamstrahlung background

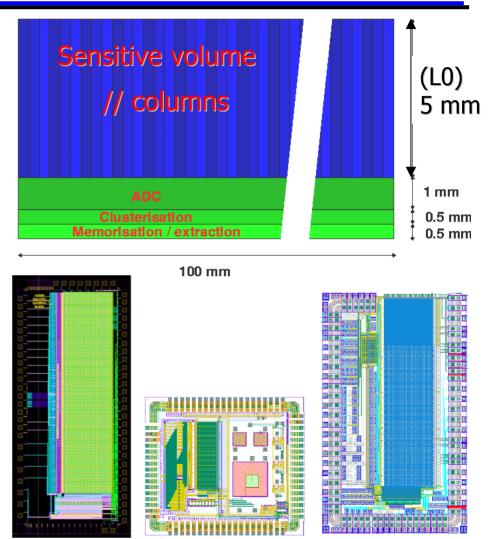
- Characteristics (from Monte-Carlo !!!)
- e[±]_{BS} have essentially low momentum
 ⇒very sensitive to B_{exp}=4T

> Only e^{\pm} with $p \ge ~ 9 \text{ MeV/c}$ (resp. 16 MeV/c) reach L0 (resp. L1)

- $\sim \sim \le 5$ hits/cm²/BX at 90° (R = 15 mm, 4T)
 - 1) Impact on read-out speed:
 - \blacktriangleright 0.15 % hit occupancy in 25 μ s
 - ▶ Cluster mult. (5-10), uncertainties (MC, etc.) \Rightarrow occup. ~≤ 5 %
 - \Rightarrow ~≤ 25 μs needed in L0 and ~≤ 100 (50?) μs in L1
 - 2) Impact on radiation tolerance w.r.t. non-ionising damage:
 - $\Rightarrow 6.10^{11} \text{ e}_{\text{BS}}/\text{cm}^2/\text{yr} \Rightarrow 2.10^{10} \text{ n}_{\text{eq}}/\text{cm}^2/\text{yr}$ (NIEL factor ~ 1/30)
 - ⇒ Uncertainties (MC, NIEL, etc.): ~≤ 1.10¹¹ n_{eq}/cm²/yr (Ionising damage less worrying: ~ 15-50 kRad/yr)

The issue of radiation tolerance

- Non ionising damage:
 - 1) Neutron gas:
 - M.C. prediction ~ 10⁹ n_{eq}/cm²/yr
 - > MIMOSA-1/-2 tests (DUBNA): $\sim \le 10^{12} n_{eq}/cm^2$ acceptable
 - > <u>Required tolerance</u> should account for uncertainties (safety factor of 10) and ≥~ 3 years of running: ~ $3.10^{10}n_{eq}/cm^2$
 - 2) Beamstrahlung e[±]:
 - > M.C. <u>prediction</u> ~ $6.10^{11} e_{BS}/cm^2/yr (2.10^{10}n_{eq}/cm^2/yr)$ in L0
 - Accounting for uncertainties (M.C.,etc.)
 - \Rightarrow <u>Aim for tolerance</u> to $\sim \le 10^{13} \text{ e}_{\text{BS}}/\text{cm}^2$ ($\sim 3.10^{11} \text{n}_{\text{eq}}/\text{cm}^2$)


2 MIMOSA-9 chips exposed to 3.10^{12} and 10^{13} e⁻/cm²: analysis under way

• Ionising damage:

- e_{BS}: M.C. <u>prediction</u> ~ 15 kRad/yr
- <u>Aim for tolerance</u> to 150 kRad (3 years, including uncertainties)
- MIMOSA chips exposed to 10 keV X-Rays: no perfo. loss for several 100 kRad
- Proto. designed for bio-medical imaging (SUCIMA FP5), with dedicated features against rad. damage, stands 1 MRad (X-Rays) without significant loss
- New prototype being fabricated (MIMOSA-11), equipped with various pixel architectures exploring sources of ionising radiation sensitivity

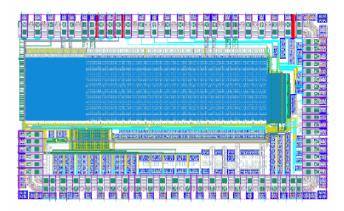
Achieving high read-out speed

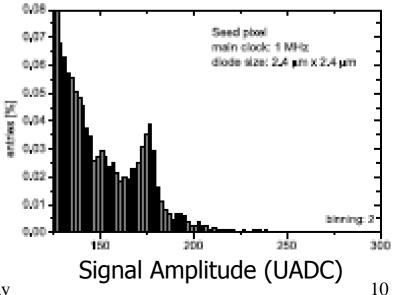
- Fast read-out required in L0 (and L1) ⇒massively // processing
 - Ladder subdivided in short columns (⊥ to beam) processed in // (serial treatment of pixels inside each col.)
 - Large data flow
 data sparsification integ. on chip
- Develop progressively full r.o. chain on col. par. prototypes:
 - Inside each pixel: CDS with preAMP (cf MIMOSA-6, -7, -8)
 - End of each column: ADC + cluster finding + sel. info extraction

MIMOSA-7

MIMOSA-6 CMOS Strasbourg - Saclay

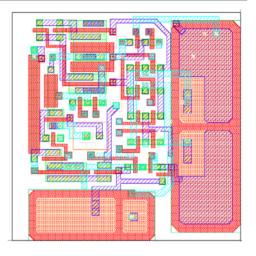
LCWS-05, SLAC, March 2005

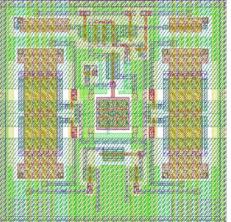

MIMOSA-8


Achieving high read-out speed (2)

- MIMOSA-8 (designed in 2003 with DAPNIA)
 - TSMC 0.25 μ m digital fab. process with 8 μ m epitaxial layer
 - 32 // columns of 128 pixels
 - Pixel pitch: 25 μm
 - 4 sub-arrays featuring AC and DC coupled on-pixel voltage amplification
 - On-pixel CDS
 - Discriminator at end of each column
- Test with ⁵⁵Fe source:
 - Very encouraging results
 - Conversion factor: 50-110 μV/e-
 - Pixel noise (including CDS) ~ 13-18 e⁻ ENC !
 - Low pixel-to-pixel dispersion
- Architecture seems worth extending with integrated ADC, a.s.o.

LCWS-05, SLAC, March 2005


CMOS Strasbourg - Saclay



Achieving high read-out speed (3)

- e_{BS}^{\pm} rate is ~ 25 times lower in L2 than in L0 $\Rightarrow t_{r.o.} \sim 200 \ \mu s \Rightarrow \sim 5$ frames / train
- 2 phase micro-circuit architecture, reducing the data flux:
 - Charge sampled and stored inside pixel during train
 ⇒ 5 capacitors integrated in each pixel
 - 2) Signal processed in between trains
- 1st multi-capa. pixel: MIMOSA-6 (design with DAPNIA in 02) Test results: ⇒Large pixel-to-pixel dispersion
- MIMOSA-12: new prototype exploring various types & dimensions of memory cells (scheduled for fab. 25 March)
 - AMS-0.35 μm techno.
 - 4 capacitors/pixel (35 μ m pitch)
 - 6 sub-arrays, exploring various MOS capa.: 50, 100, 200 fF
 - ⇒ Aim for minimal size capacitors providing satisfactory precision, depending on pitch - i.e. layer - (~ 4.6 fF/µm²)

Summary and Outlook

- Concept of vertex detector using features of CMOS sensors progressing, based on requirements accounting for uncertainties (e_{BS} !)
- Well established performances:
 - **S/N**, ε_{det}, σ_{sp}
 - Rad. Tolerance to neutrons and X-Rays
 - 120 μm thinning of Megapixel sensors
- Most recent achievements
 - Fast col. // pixel architecture (integrated CDS) found, with low noise (< 20 e⁻ ENC) and small pixel-to-pixel dispersion
 - Assessment of a well performing R&D fabrication process:
 AMS-035 μm (opto and epi-free) ⇒ very good perfo. even with 40 μm pitch (L4)
 - Checks of tolerance to 10-20 MeV electrons under way
 - Outcome of thinning to 50 μ m under study ($\geq \sim$ 15 μ m not yet OK)
- Next important steps:
 - 1) Fast column // sensor with digital output, adapted to L0-1 (integrated low power, fast and compact 4-bit ADC)
 - 2) New multi-memory cell sensor adapted to L2-4
 - Complete study of MIMOSA-5 thinning to \sim 50 μ m with LBL
 - Investigate characteristics of new fab. processes (e.g. IBM-0.13 μ m, UMC-0.18 μ m)
 - Thinning no-epi sensors is very appealing: any possibility ?
 - Privileged contact with a foundry would be very valuable...
- > Aim for a fast col. // megapixel proto providing digital output in 2007