Status of the UK MAPS

J.J. Velthuis, P.P. Allport, G. Casse, R. Turchetta, M. Tyndel, G. Villani

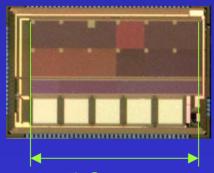
- UK MAPS program
- Source tests
- Radiation test
- FAPS
- Ladder development
- Conclusions
- Outlook

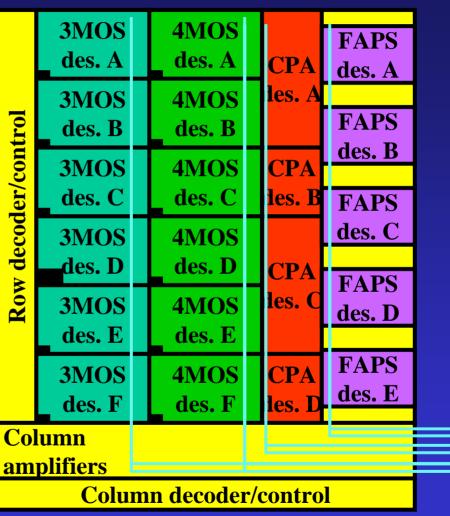
Jaap Velthuis (University of Liverpool)

LCWS05

March 19 2005

UK MAPS program


- Successfully produced 3 test structures:
 - RALHEPAPS 1 See LCWS04
 0.25 CMOS IBM
 - Eight arrays of 8x8 pixels
 - Pixels 15 μ m pitch
 - 2 μm epi-layer
 - RALHEPAPS 2 \Rightarrow work horse \parallel See IEEE04+ VERTEX04
 - RALHEPAPS 3 See VERTEX04
 - 0.25 Mixed Signal CMOS TSMC
 - Pixels 15 µm pitch
 - No epi-layer
- RALHEPAPS 4 to be submitted end of March
 - Large scale structure


RALHEPAPS 2

- 4 pixel types, various flavours
 - Std 3MOS
 - 4MOS (CDS)
 - CPA (charge amp)
 - FAPS (10 deep pipeline)
- 3MOS & 4MOS: 64×64,
 15µm pitch, 8µm epi-layer ⇒
 MIP signal ~600 e-

Jaap Velthuis (University of Liverpool)

Design: R. Turchetta (RAL)

March 19 2005

LCWS05

APS2 3&4MOS: Various flavours

Des. F

Des. L

Des. C

Des. B

Des. A

3MOS 4MOS

Like E but with pwell as small as possible

Like B but with four diodes in parallel

Like B but with pwell as small as possible

Like B but with gate-all-around transistors

Like A but with smallest diode (1.2*1.2 µm) Reference pixel (diode ~ 3*3 µm)

Initial production error, now okay

Gain too low Jaap Velthuis (University of Liverpool)

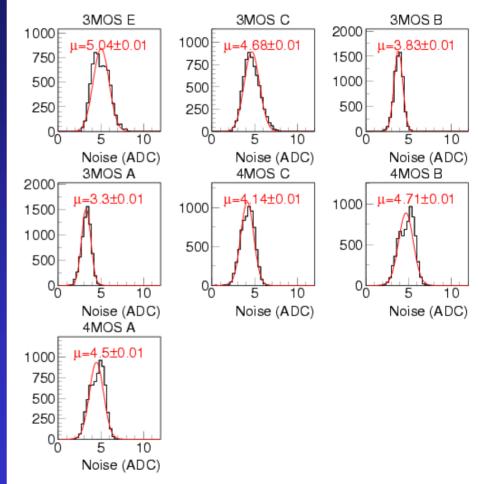
LCWS05

March 19 2005

4/20

Like C but with gate-all-around transistors

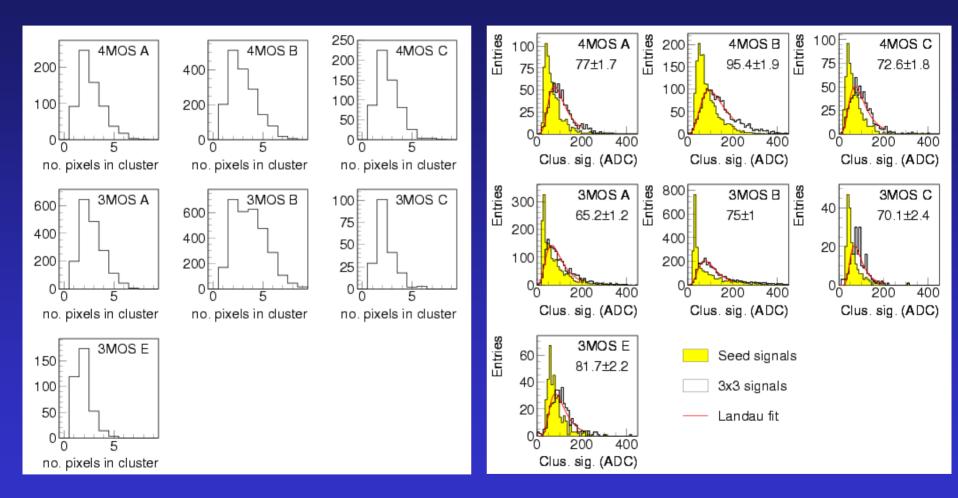
Like B but with gate-all-around transistors


Like A but with gate-all-around transistors

Like A but the TX transistor has lower Vt

Like A but the TX transistor has higher Vt Like 3MOS-A but with the TX transistor

APS2: Source test


- ¹⁰⁶Ru-source emitting β -particles
- Here only use 3MOS and 4MOS (no CDS)
- Calculate pedestals
 - Average output after removing hits
- Calculate common mode noise
 - Average pixel type output after pedestal subtraction
- Calculate random noise
 - Sigma of pedestal and common mode corrected output
- Cluster definition
 - Signal >85 seed
 - Signal >2σ next

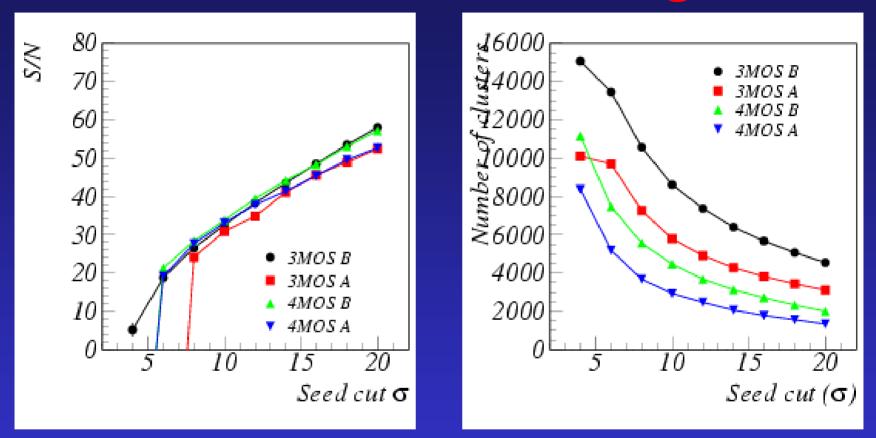
Jaap Velthuis (University of Liverpool)

LCWS05

APS2: cluster size & signals

Jaap Velthuis (University of Liverpool)

LCWS05

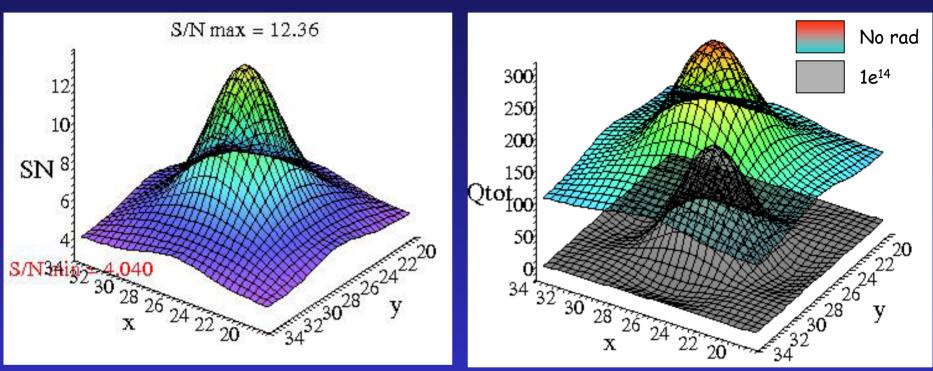

APS2 3&4 MOS summary

Туре	Specs	5/N
3MOS E	4 diodes	21 <u>+</u> 6
3MOS C	<i>GAA</i> 20 <u>+</u> 6	
3MOS B	Diode 1.2x1.2	21 <u>+</u> 5
3MOS A	Diode 3x3 22±4	
4MOS C	Lower V_T 27±7	
4MOS B	Higher V_T	16±4
4MOS A	Reference	18±4

- Out of 12 substructures 7 display good S/N.
 - Two structures initial problems in fabrication, but ok now.
 - 4MOS GAAs have too low S/N for MIPs.
 - Variation in S/N between various sensors found to be large.
- Need test beam results:
 - Seed cut determines S/N result
 - Efficiency not uniform
- Have taken testbeam data in February. Analysis is still ongoing.

Jaap Velthuis (University of Liverpool) LCWS05 March 19 2005

Effect seed cut on signal



 Measured S & S/N highly dependent on seed cut (efficiency vs purity)

Jaap Velthuis (University of Liverpool) LCWS05 March 19 2005 8/20

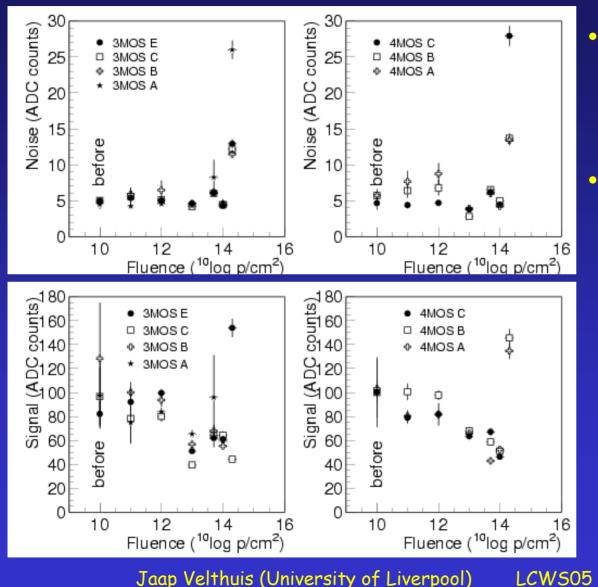
S/N uniformity

Simulation: G. Villani (RAL)

- S/N varies over pixel between 12 and 4 before irradiation.
- S drops to zero at edges after 1e¹⁵ p/cm².

Jaap Velthuis (University of Liverpool)

LCWS05

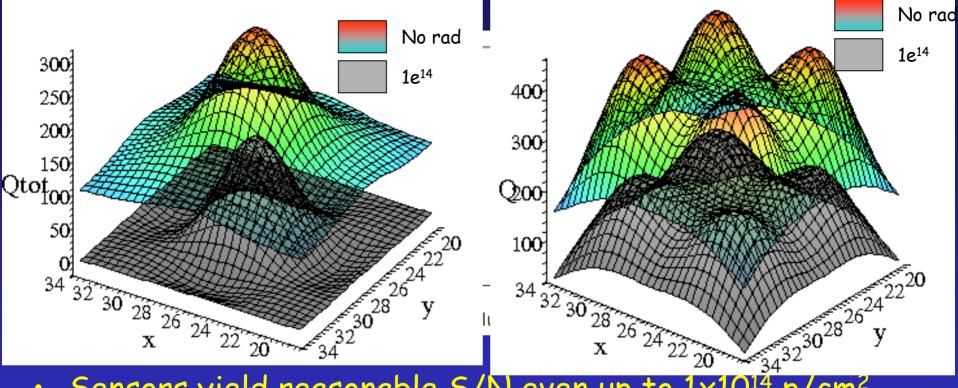

March 19 2005

Radiation test

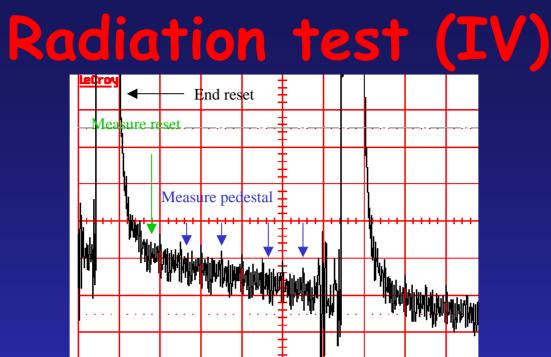
- Irradiated APS2 up to 10¹⁵ p/cm² at CERN.
 - 10¹² p/cm² ILC requirement
 - 2x10¹⁵ p/cm² 10 years ATLAS pixel layer
- Repeat analysis at each dose with same cuts
 - Seed >8σ
 - Neighbour >2 σ

Dose (p/cm ²)	#APS2
0	3
1e11	4
1e12	4
1e13	4
5e13	4
1e14	2
2e14	2
5e14	2
1e15	2

Radiation test (II)


Noise seems to increase slightly with dose. Signal decreases with

dose.


3MOSA	3x3 μm ²
3MOSB	1.2x1.2 μm ²
3MOSC	GAA
3MOSE	4 diodes
4MOSA	Reference
4MOSB	Higher V_T
4MOSC	Lower V_{T}

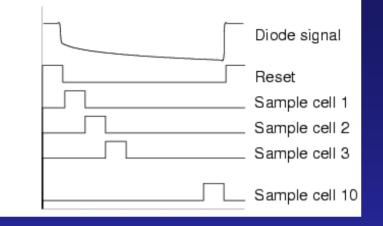
March 19 2005

Dediction test (TTT)

- Sensors yield reasonable S/N even up to 1x10¹⁴ p/cm²
 - No efficiency measurement; need testbeam data analysis
- Especially 3MOSE (4 diodes) looks interesting
 - Larger capacitance yields larger noise
 - But after irradiation remains a larger "sensitive area"

- Slope is due to leakage current
 - Measure pedestal-reset(time)
 - Fit straight line
 - Plot average slope versus dose

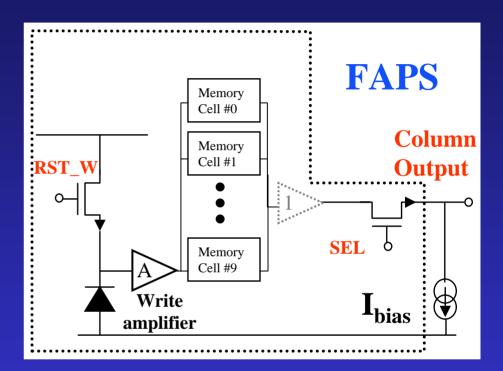
• No significant increase in leakage current.


- NB. Measured at -20 °C

Jaap Velthuis (University of Liverpool)

LCWS05 March

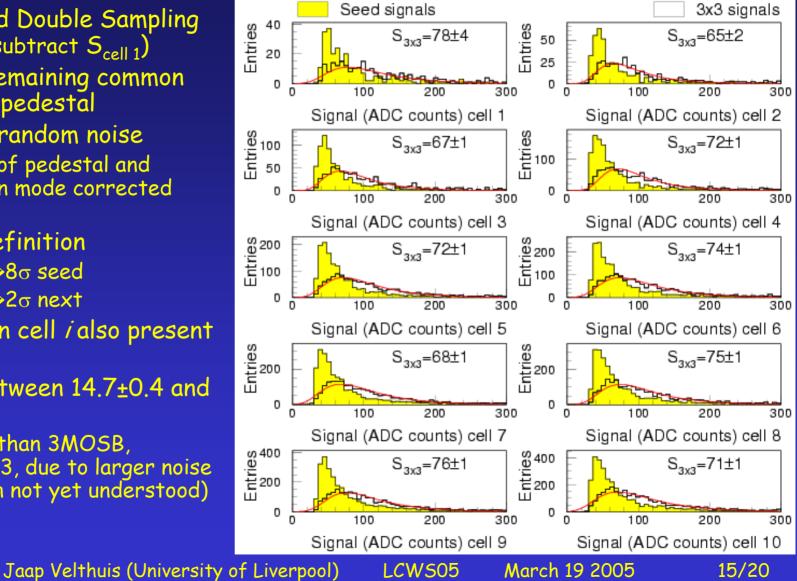
March 19 2005


Flexible APS

FAPS=Flexible APS

- Every pixel has 10 deep pipeline
- Designed for TESLA proposal.
 - Quick sampling during bunch train and readout in long period between bunch trains

Jaap Velthuis (University of Liverpool)

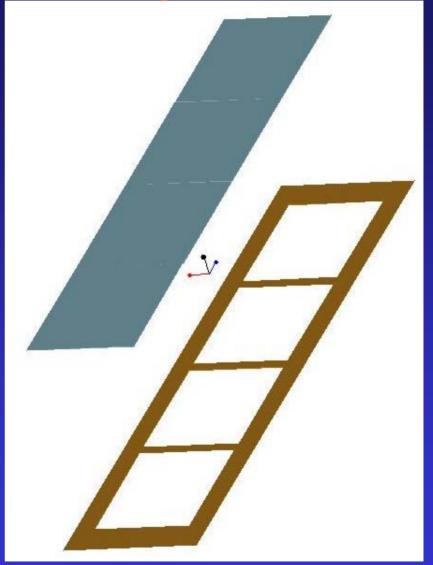

March 19 2005

14/20

LCWS05

FAPS source test

- Correlated Double Sampling readout (subtract S_{cell 1})
- Correct remaining common mode and pedestal
- Calculate random noise
 - Sigma of pedestal and common mode corrected output
- **Cluster** definition
 - Signal >85 seed
 - Signal >20 next
- Note hit in cell *i* also present in cell *i+1*.
- S/N_{cell} between 14.7±0.4 and 17.0±0.3
 - Lower than 3MOSB, 19.6±0.3, due to larger noise (reason not yet understood)

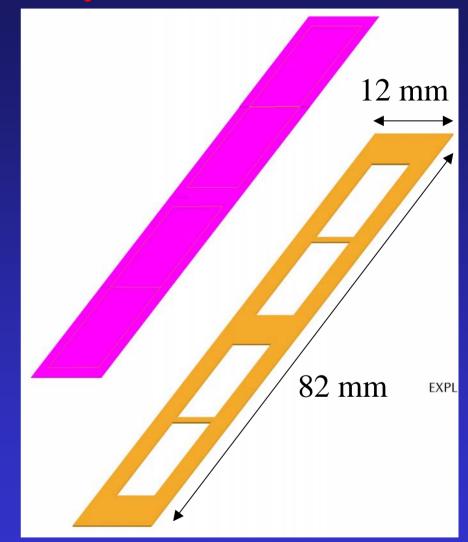

RALHEPAPS 4

- New large scale device will be submitted end of March
 - AMS 0.35 μm CMOS
 - 1024x384 pixels
 - 15 μ m pitch (active area 15.4x5.8 mm²)
 - Two versions because of design rules:
 - 4 small diodes in parallel
 - 2 larger diodes in parallel
 - 10-20 µm epi-layer
 - Readout speed designed for 5-10 MHz

Ladder concept

• Idea:

- 2 large MAPS sensors (trough stitching)
- thinned down to 20-30 μm
- operating close to room temperature on
- thin CVD diamond ladder
- CVD diamond:
 - Very strong/stiff
 - Light/low radiation length
 - + 100 μm thick diamond possible
 - Cut away diamond underneath sensitive area (heat mainly generated in periphery)
 - Excellent heat transport
 - Cooling by cold contact at edge of ladder

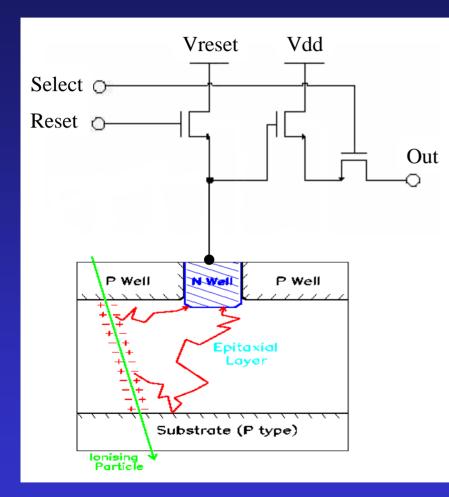


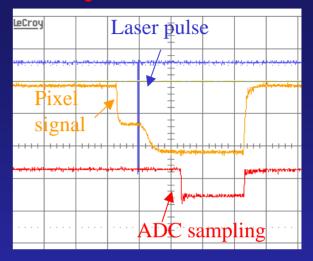
Jaap Velthuis (University of Liverpool)

LCWS05

Ladder concept (II)

- Complication: CVD diamond available in various qualities (and prices).
 - Working on this with ElementSix (de Beers)
- Have ordered first test ladder to be equipped with APS4 to test idea.
 - Ladder will arrive beginning of May
 - Aiming for thinned APS4s by end of summer (e2v)

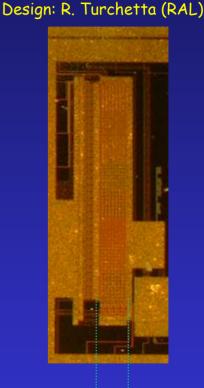



- Have successfully produced 3 test structures.
- On APS2 we have tested the 3MOS, 4MOS and FAPS.
 - Of the 12 3&4MOS structures 7 yield good S/N in source tests (S/N=15-20)
- Have performed an irradiation test up to 10¹⁵ p/cm².
 - 3MOS & 4MOS devices still operational after 10¹⁴ p/cm².
 - Especially 3MOSE (4 diodes) seems to operate reasonably well up to 10¹⁴ p/cm².
 - Observed no significant increase in leakage current (at -20 $^{\circ}C$).
- FAPS (10 deep pipeline in each pixel) working fine!
 - S/N_{cell} between 14.7±0.4 and 17.0±0.3

Outlook

- Done a test beam in February 2005. Analysis is still in progress.
- New large scale device RALHEPAPS4 will be submitted soon:
 - 1024x384 pixels
 - 15 μ m pitch (active area 15×6 mm²)
 - >10 μm epi-layer
 - Two versions: 4 and 2 diodes in parallel
- We are working on a ladder concept based on CVD diamond
 - First prototype will be delivered beginning of May

Monolithic active pixels

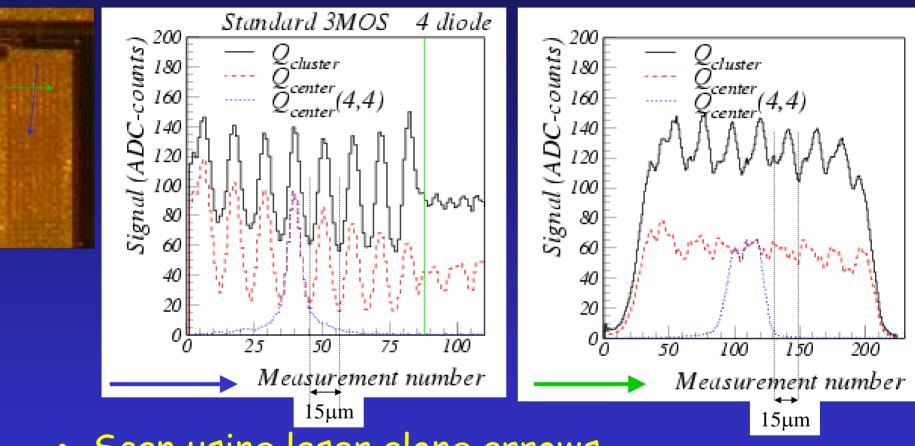

- Epitaxial layer forms sensitive volume (2-20µm)
- Charge collection by diffusion
- Charge collected by N-well

Jaap Velthuis (University of Liverpool)

LCWS05

APS1

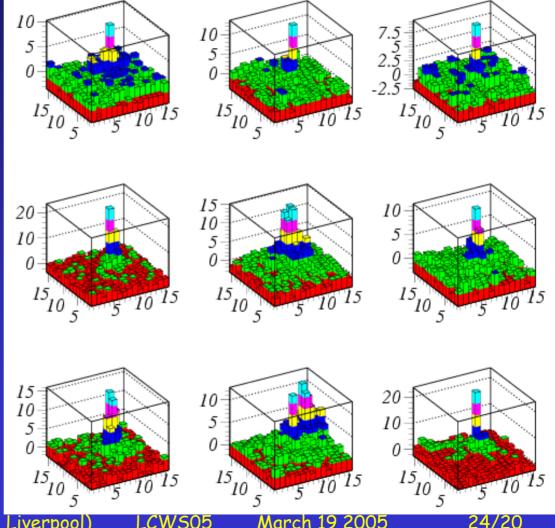
- Eight 8*8 arrays (15 μm pitch)
 - Baseline 3MOS pixel
 - 4 diode
 - 4MOS (CDS)
 - Baseline with cal
 - (4 Photogate pixels)
- 2 μm epi-layer
- 0.25 CMOS IBM



LCWS05

March 19 2005

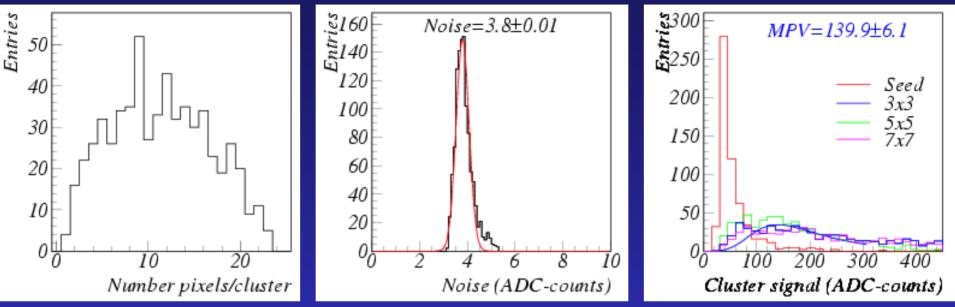
APS1 Laser scan


- Scan using laser along arrows
- Laser spot: σ=7μm
- Effects of metal structure clearly visible

Jaap Velthuis (University of Liverpool) LCWS05 March 19 2005

APS3: std 3MOS

Cluster in S/N

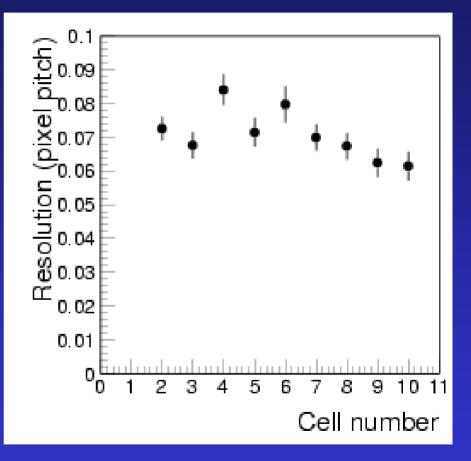

- Designed in **TSMC** 0.25µm Mixed Signal CMOS.
- Diode 1.8*1.8 μm
- No epi-layer
 - Large clusters
 - Large signals

Jaap Velthuis (University of Liverpool

'S05

APS3: std 3MOS source test

- Huge cluster size
- Large signals
- Fit does not describe data very well (5x5 clusters) but most probable value estimate reasonable
 - S/N_{3×3}=30.7±0.8
 - $S/N_{5x5}=37\pm 2$


Jaap Velthuis (University of Liverpool)

LCWS05 M

March 19 2005

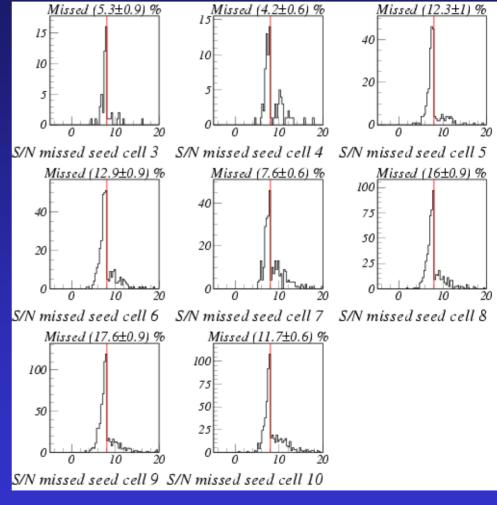
FAPS Hit resolution

- Hit Resolution≠spatial resolution!!!
- Take hits found in cell 2
- Reconstruct x and y each cell using Centre-of-Gravity
- Calculate average hit position
- Determine residual position for each memory cell
- Hit resolution approximately 1.3 μm

LCWS05

March 19 2005

FAPS efficiency estimate


- Find hits in all cells
- Plot max S/N_{pixel} in 3x3 area around expected hit position if hit not found

• Define:

 $Missed = \frac{\# missed \ seed \ cut}{\# \ seeds \ cell(i-1)}$

 Clearly, strongly dependent on seed cut. Lowering seed cut to 5₅ yields inefficiency ranging between 0.08±0.08% and 0.5±0.1%

Jaap Velthuis (University of Liverpool)

LCWS05 Mc