

Charge Transfer Inefficiency Studies

for a Future CCD Vertex Detector

André Sopczak on behalf of the LCFI Collaboration (Bristol U, Lancaster U, Liverpool U, Oxford U)

Lancaster PhD student: James Walder

Outline

- Charge transfer inefficiency (CTI)
- ISE-TCAD (FEA 2D) simulation of 3-phase CCD: Radiation dose \sim 30 krad bulk damage
- Effect of initial conditions
- Frequency variation
- Simple model of simulation
- Experimental set-up for column parallel CCD
- Dark current measurements
- Initial CTI test measurements
- Summary

Simulation CCD

Detector structure and potential at gates after initialization. The signal charge is injected under gate 3.

Charge Transfer

Signal charge density, almost at output gate. Trapped charge density, from transfer of signal charge.

Consider partially filled traps: improves simulation by representing a continuous readout process.

- Negligible contribution to CTI from 0.44eV trapping for partially filled traps (due to long emission time).
- Thus, neglect 0.44eV traps in further study.
- Needs to be confirmed by experiment.

New data to cover simulation temperature range: possibility to measure peak structure.

At high temperature: emission time so fast that trapped charge rejoins passing signal. Near peak: for higher readout frequency there is less time to trap charge.

Simple CTI Model for 3-Phase CCD

Why model a simulation?

Faster than full ISE simulation, provides insight into factors affecting CTI. Traps undergo two basic processes:

- 1. Traps capture electrons from the signal charge,
- 2. Electrons are emitted from filled traps.

Processes occur at different rates. Governed by capture $\tau_{\rm c}$ and emission $\tau_{\rm e}$ time constants.

Column Parallel CCD Studies

- High readout speed requires column parallel technology.
- LCFI prototype device CPC-1 capable of 20 MHz readout per channel.
- Unirradiated tests performed at CCLRC RAL
- Fe⁵⁵ source used to mimic MIP.
- Standalone set-up uses four external ADC amplifiers.

Typical output from three columns of CPC-1 with Fe^{55} source.

Noise $\approx 60 \,\mathrm{e^-}$, Freq. = 1 MHz, Integration time = 500 ms, $T \approx -30 \,^\circ\mathrm{C}$, 2000 frames.

CTI - Event Selection

 Fe^{55} isolated hits ($\approx 1620 \,\mathrm{e}^{-}$) used to determine CTI. Hits located using 3x3 cluster method. Loose selection criteria:

- Pixel amplitude > $5\sigma_{\text{noise}}$,
- $\Sigma_{i=1}^8 |\text{cluster}_i| < 8\sigma_{\text{noise}}$.

CTI - Determination

Scatter plot of isolated pixel hits; ADC amplitude Q against pixel number gives

$$\mathrm{CTI} = -\frac{1}{Q_0} \frac{\mathrm{d}\,Q}{\mathrm{d}\,(\mathrm{Pixel})},$$

where Q_0 is intercept from straight-line fit.

CTI - Voltage Induced

- Unirradiated device; small CTI (< 10^{-5}).
- However, decrease of clock voltage reduces transfer efficiency.
- Provides possibility to measure CTI as function of clock voltage.

Dark Current - Measurement

- Thermally generated electrons captured in potential wells.
- Charge collected proportional to integration time.
- 10 overclocks sampled per frame used as reference level.
- Gain (e⁻/ADC) calibrated from Fe^{55} source (at each temperature).

Dark current measurement

DC at different temperatures

Dark Current - Result

Fit to $J_{\rm dc} = T^3 \exp(\alpha - \beta/T)$.

Uniform dark current characteristics observed across the four channels

Summary and Outlook

Simulation

- Radiation hardness simulation of a CCD prototype studied.
- Clear CTI peak structure observed.
- Simple model (emission and capture time) agrees well.

Experiment

- Investigated with low statistics:
 - CTI (Voltage induced),
 - Dark Current.

Future

- Simulation of column parallel CCD ongoing for comparison with data.
- Data from Liverpool will allow confrontation with simulation.