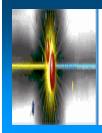


SUSY Co-annihilation Region at ILC hep-ph/0503165

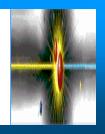
R. Arnowitt,¹⁾ <u>B. Dutta</u>,²⁾ T. Kamon,¹⁾ V. Khotilovich,^{1)*}
1) Department of Physics, Texas A&M University
2) Department of Physics, Regina University, Canada
* Graduate Student

Talk Outline

SUSY and Cosmology


Available mSUGRA parameter space with:

- (a) **Rare** decay constraints
- (b) Collider bounds
- (c) Cosmological constraints


ILC ($\sqrt{s} = 500$ and 800 GeV) reach of the mSUGRA parameter space via $\tilde{\tau}_1^+ \tilde{\tau}_1^$ and $\tilde{\chi}_1^0 \tilde{\chi}_2^0$

- (i) Detailed study of signal and the background processes
- (ii) Determination of SUSY masses in the dark matter allowed regions

Conclusion

1. parity invariance is used as a benchmark.

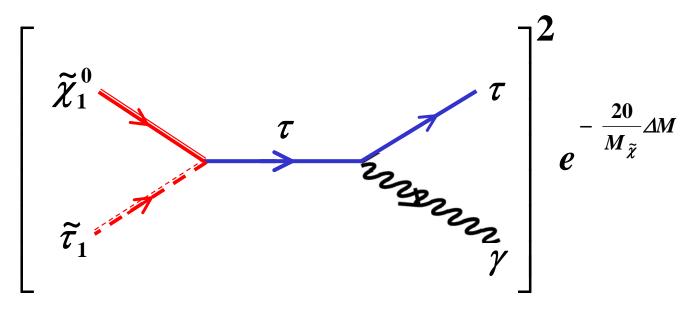
<i>m</i> _{1/2}	Common gaugino (spin=1/2) mass (GeV)
<i>m</i> ₀	Common scalar (spin=0) mass (GeV)
tan <i>β</i>	Ratio of 2 v.e.v.'s
	(2 Higgs doublets; $H_u \& H_d$)
sign(µ)	Sign of Higgs mixing parameter μ (GeV)
	\rightarrow We choose $\mu > 0$
A_0	Trilinear coupling (GeV)
	\rightarrow We choose $A_0 = 0$

2. $\tilde{\chi}_1^0$ - the lightest neutralino a stable dark matter as candidate.

SUGRA models with R 3. The relic density of these neutralinos is given by:

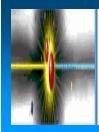
$$\Omega_{\tilde{\chi}_1^0} h^2 \sim \left[\int_0^{x_f} \langle \sigma_{\rm ann} v \rangle dx\right]^{-1}$$

where σ_{ann} is calculated in terms of SUSY model parameters typically using the following diagrams:

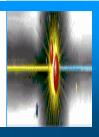

A/H

 $\widetilde{\chi}_1^{(i)}$

 $\widetilde{\chi_1}^{(0)}$


March 21, 2005

• Co-annihilation [Griest and Seckel '92]: An accidental near degeneracy occurs naturally for light stau $\tilde{\tau}_1$ in mSUGRA.



• Here $\Delta M \equiv M_{\tilde{\tau}_1} - M_{\tilde{\chi}_1^0}$. This diagram also contributes to the relic density along with the other neutralino annihilation diagrams. This is a generic feature of any SUSY model.

March 21, 2005

Experimental Constraints and Technical Issues

CLEO $b \rightarrow s \gamma$

 $1.9 \times 10^{-4} < Br < 4.5 \times 10^{-4}$

LEP Higgs Mass

 $M_{\rm Higgs} > 114~{
m GeV}/c^2$

LEP Chargino Mass Bounds

 $M_{\rm chargino} > 104 \; {
m GeV}/c^2$

Relic Density Bounds

 $0.094 < \Omega_{\chi_1^0} h^2 < 0.129$

[WMAP, Balloon Experiments such as BoomeranG, Maxima, DASI etc., Supernovae data, Radio Galaxy measurements]

$b \rightarrow s \gamma$

Large $\tan\beta$ NLOcorrection[Degrassi et al.; Carena et al.; Buraset al.; D'Ambrosio et al.]

Relic Density

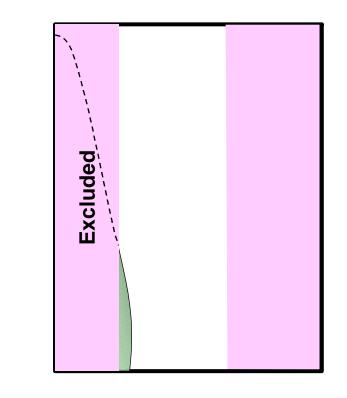
Inclusion of co-annihilation $\tilde{\tau}_1 - \tilde{\chi}_1^0$ effects in relic density calculations [Ellis *et al.*; Arnowitt, Dutta; Gomez *et al.*]

Note: We do not assume Yukawa unification or proton decay as these depend on unknown physics beyond $M_{\rm G}$.

March 21, 2005

Existing Bounds from Experiments

[1] Higgs Mass (M_h) :


M_h > 114 GeV

(The Higgs mass depends on the mass parameters m_0 and $m_{1/2}$, and A_0 and $\tan\beta$.)

[2] Branching Ratio $b \rightarrow s\gamma$: CLEO: $(3.21 \pm 0.47) \times 10^{-4}$ SM : $(3.62 \pm 0.33) \times 10^{-4}$ $Br\left[\begin{array}{c} \gamma \\ \tilde{t} \\ \tilde{t} \\ \tilde{\chi}_{1}^{\pm} \\ s \end{array} \begin{array}{c} \gamma \\ \tilde{t} \\ \tilde{t} \\ \tilde{t} \\ \tilde{t} \end{array} \right] \propto \frac{1}{m_{SUSY}^{2}}$

• Excluding parameter space based on the SUSY particle masses.

Excluded Region in SUSY World

Mass of Gauginos

Mass of Squarks and Sleptons

6

Existing Bounds from Experiments

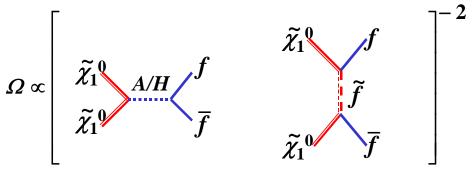
[3] Magnetic Moment of Muon:

$$\mu = g {eh \over 2m} s$$

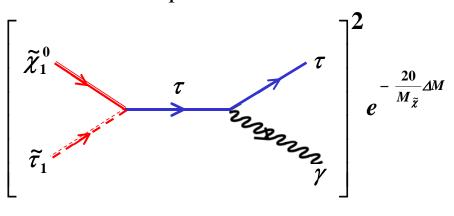

• In the Supersymmetric SM:

g=2(1+a)

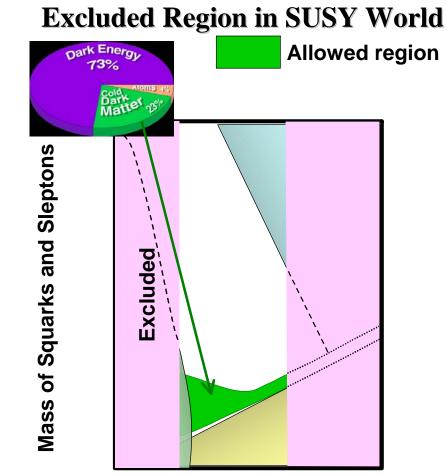
a is the anomalous magnetic moment.


• The latest BNL result:

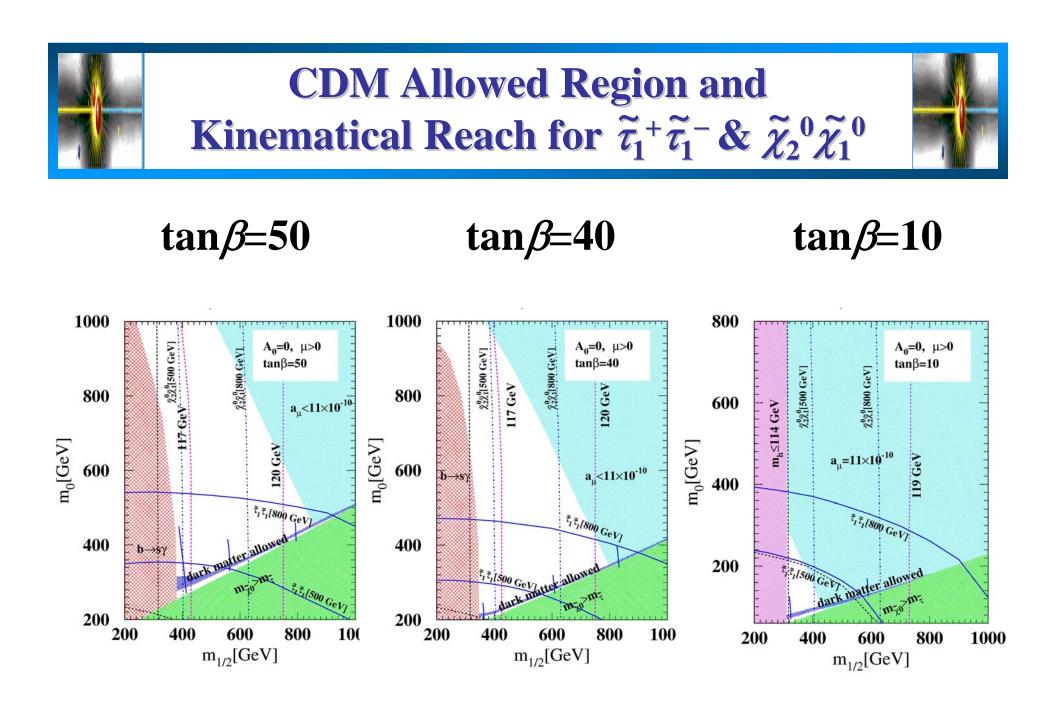
 $a_{\mu}^{
m exp} - a_{\mu}^{
m SM} = (27 \pm 10) imes 10^{-10}$


Existing Bounds from Experiments [4] Dark Matter: Allowed region

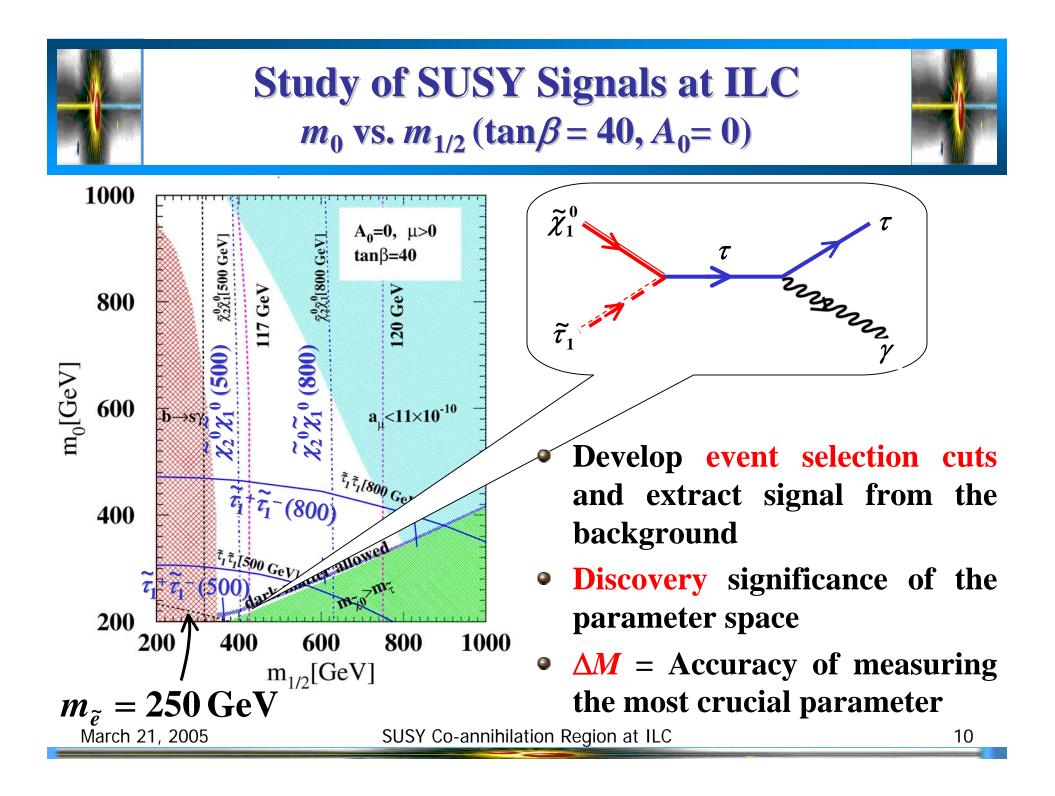
- The relic density is expressed as Ω where $\Omega_{\rm CDM} = 0.23 \pm 0.04$.
- Neutralino $(\widetilde{\chi}_1^0)$ constitutes the dark matter in this model. It is the lightest and stable particle in our model.
- In order to calculate Ω_{CDM} , we need to know the density of the remaining neutralinos when they stopped annihilating each other, "neutralino annihilation," i.e.



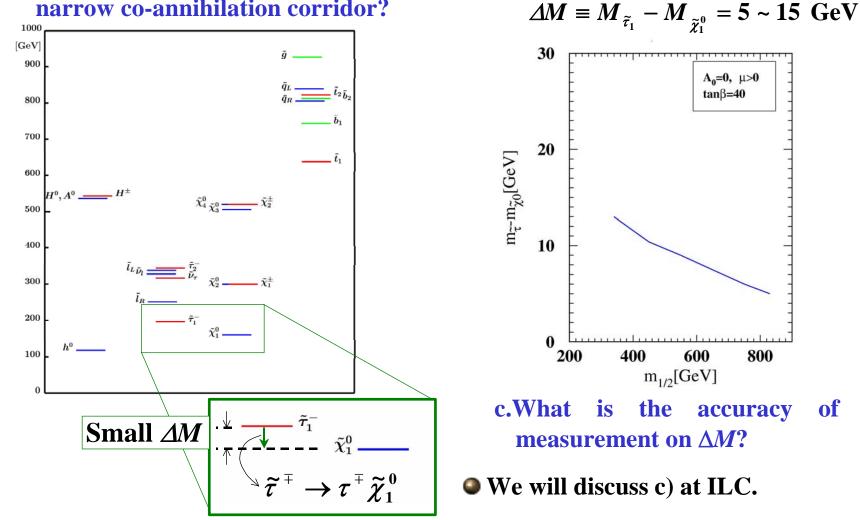
Ω_{CDM} ∝ m²_{SUSY}
 Ω_{CDM} can be expressed in terms of our mSUGRA parameters.


• Co-annihilation [Griest and Seckel '92]: An accidental near degeneracy occurs naturally for light stau $\tilde{\tau}_1$ in mSUGRA.

Here $\Delta M \equiv M_{\tilde{\tau}_1} - M_{\tilde{\chi}_1^0}$. This diagram also contributes to the relic density along with the other neutralino annihilation diagrams. This is a generic feature of any SUSY model.


Mass of Gauginos

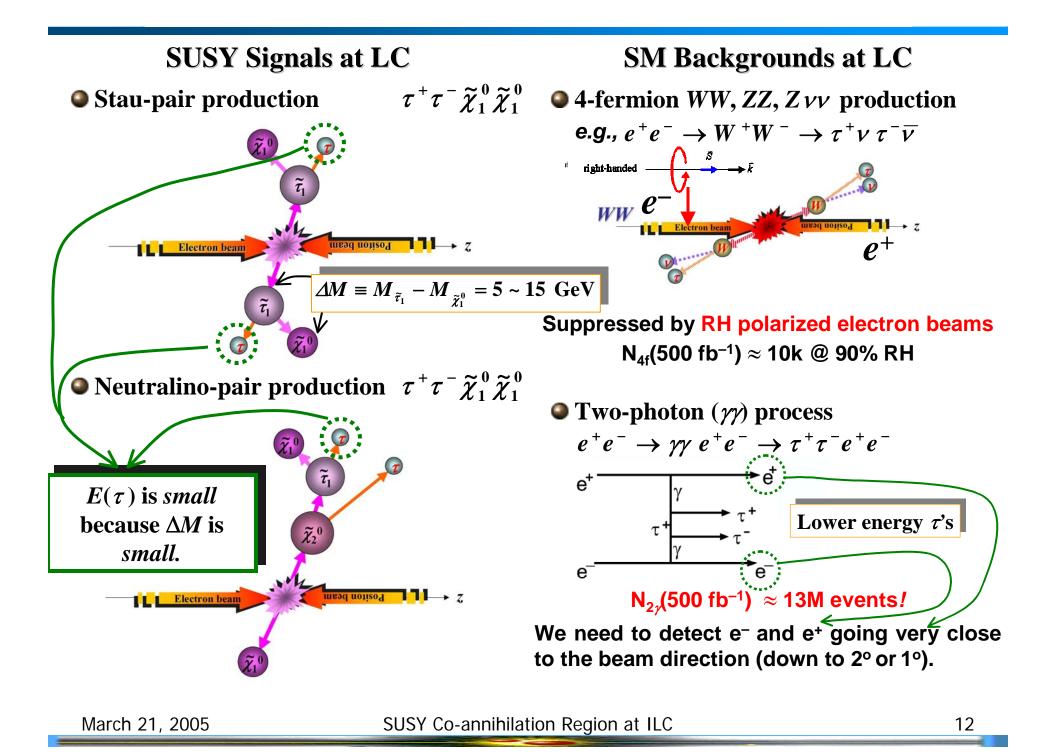
March 21, 2005

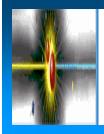

SUSY Co-annihilation Region at ILC

9

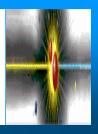
Collider Experiments Questions:

a. What are the signals from the narrow co-annihilation corridor?


the


of

Collider Experiments


Questions:

b. ΔM - How small?

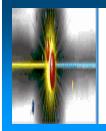
Event Generator plus Beam Bremsstruhlung SUSY: ISAJET v7.69 $e^+e^- \rightarrow \widetilde{\chi}_2^0 \widetilde{\chi}_1^0 \rightarrow \widetilde{\tau}_1 \tau + \widetilde{\chi}_1^0 \rightarrow \tau \tau + E^{\text{miss}}$ $e^+e^- \rightarrow \widetilde{\tau}_1^+ \widetilde{\tau}_1^- \rightarrow \tau \tau + E^{\text{miss}}$

SM : WPHACT v2.02pol

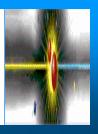
(all 4 fermion final states (SM4f) and $\gamma\gamma$ process with e^+/e^- polarization)

 $e^+e^- \rightarrow v_e v_e \tau \tau, v_\mu v_\mu \tau \tau, v_\tau v_\tau \tau \tau; ee \tau \tau, eeqq (\gamma \gamma \text{ process})$

Ref: E. Accomando and A. Ballestrero, Comput. Phys. Commun. 99, 270 (1997) E. Accomando, A. Ballestrero, and E. Maina, Comput. Phys. Commun. 150, 166 (2003)

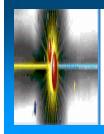

Tau Decay: TAUOLA v2.6

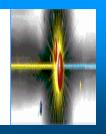
Detector Simulation & Event Analysis:


Package LCD Root v3.5

FAST MC using LD Mar01 detector parameterization, Jet Finder, ...

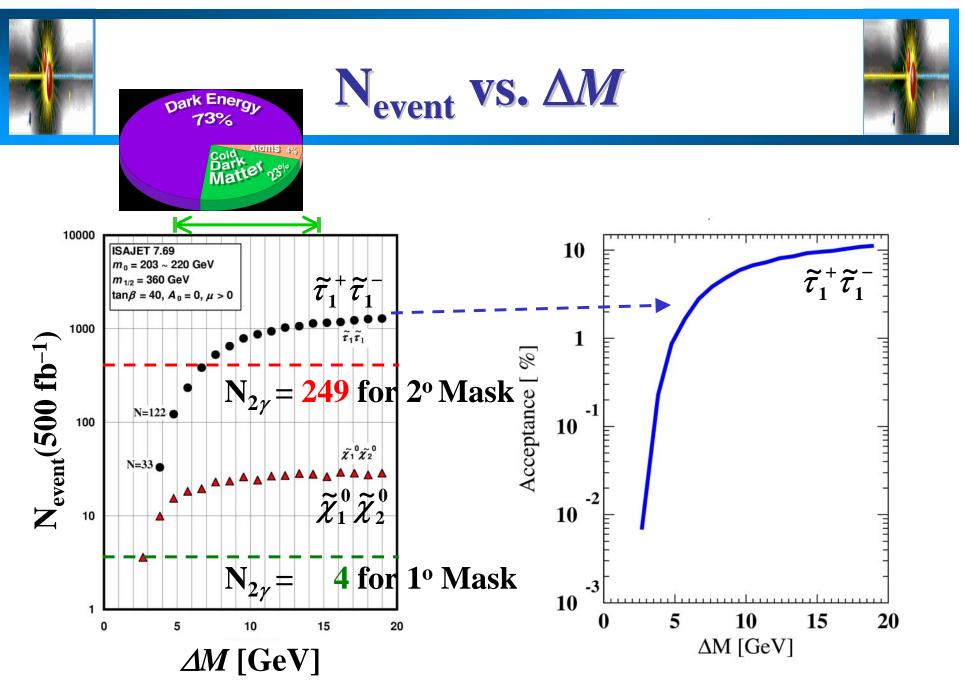
March 21, 2005


mSUGRA Points


ISAJET 7.69 $\mu > 0$, $\tan\beta = 40$, $A_0 = 0$

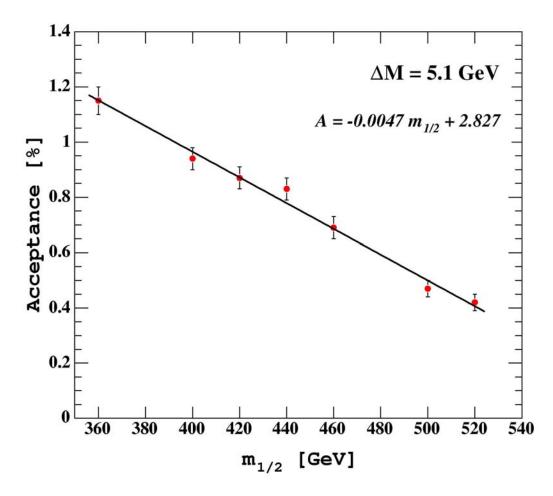
	Mass (GeV)						
MCPt	m ₀	<i>m</i> _{1/2}	$M\widetilde{ au}_1$	$M\widetilde{\chi}_1^{\ 0}$	$M \widetilde{\chi}_2^{\ 0}$	$M\widetilde{ au}_1-M\widetilde{\chi}_1{}^0$	$M\widetilde{\chi}_1^{\ 0}+M\widetilde{\chi}_2^{\ 0}$
P1	210	360	147.2	142.5	274.2	4.75	390
P2	215	360	152.0	142.5	274.2	9.53	390
P3	225	360	161.6	142.6	274.3	19.0	390
March 21, 2005 SUSY Co-annihilation Region at ILC 14						14	

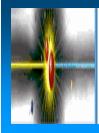
	$\sigma \times Br(\tau \rightarrow \tau_{\rm h})^2 [fb]$						
ISAJET 7.69 $\sqrt{s} = 500 \text{GeV}$							
	Pol(e ⁻)) = -0.9	$Pol(e^{-}) = 0$		$Pol(e^{-}) = +0.9$		
SM4	f 7.	7.84		48.9		89.8	
SUSY	$\chi = \widetilde{\chi}_1^0 \widetilde{\chi}_2^0$	$\widetilde{ au}_1\widetilde{ au}_1$	$\widetilde{\chi}_1^{\ 0}\widetilde{\chi}_2^{\ 0}$	$\widetilde{ au}_1\widetilde{ au}_1$	$\widetilde{\chi}_1^{\ 0}\widetilde{\chi}_2^{\ 0}$	$\widetilde{ au}_1\widetilde{ au}_1$	
P1	0.41	28.3	3.39	19.6	6.09	13.2	
P2	0.40	26.6	3.31	18.4	6.00	12.4	
P3	0.38	23.0	3.15	15.8	5.68	10.6	

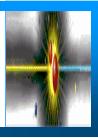

Event Selection Cuts

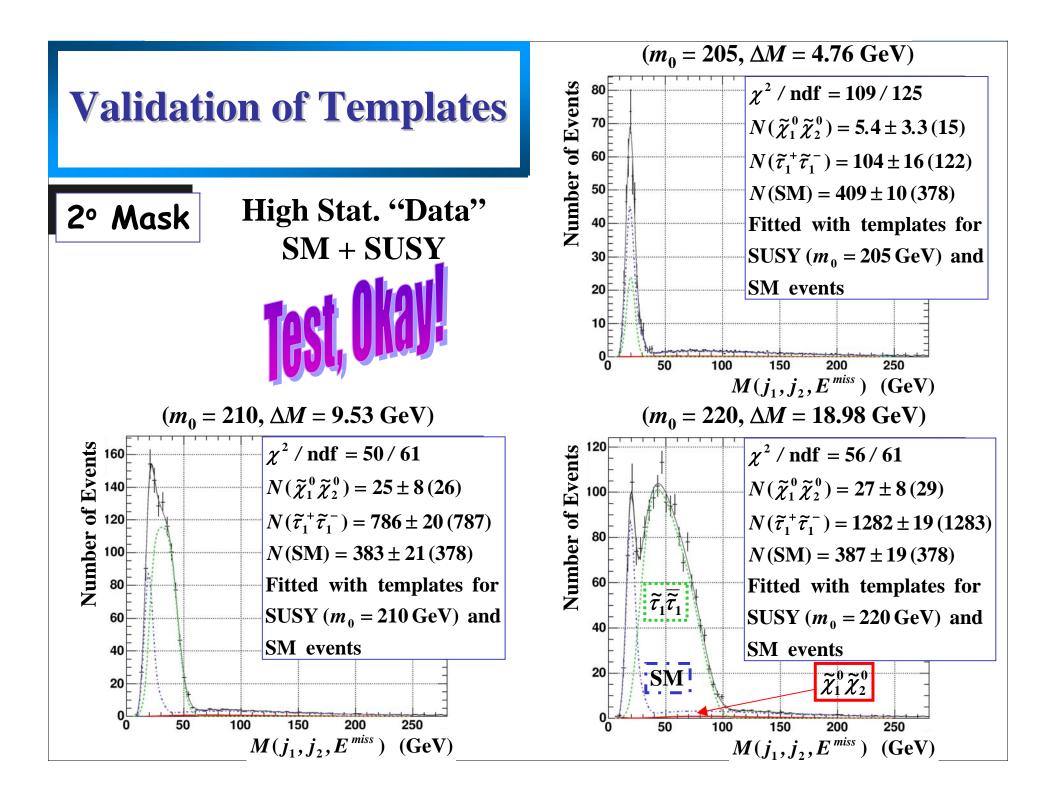
$\widetilde{\chi}_1^0 \widetilde{\chi}_2^0$ at $Pol = +0.9(LH)$	$\tilde{\tau}_1^+ \tilde{\tau}_1^-$ at $Pol = -0.9(RH)$			
$N_{jet} \ge 2 \ (E_{jet} > 3 \text{ GeV}; \text{ JADE Y} \ge 0.0025)$				
$\tau_{\rm h} \text{ ID } (N_{\rm track} = 1, 3; q = \pm 1; M_{\rm track} < 1.8 \text{ GeV})$				
$-q \propto \cos \theta_{\rm jet} < 0.7$	$ \cos\theta_{\rm jet} < 0.65$			
$Missing P_{\rm T} > 5 \text{ GeV}$				
$-0.8 < \cos\theta(j_2, P_{\rm vis}) < 0.7$	$-0.6 < \cos\theta (j_2, P_{\rm vis}) < 0.6$			
Acoplanarity > 40°				
No EM clusters in $5.8^\circ < \theta < 25.8^\circ$				
with $E > 2$ GeV				
No electrons in $\theta > 25.8^{\circ}$				
with $P_{\rm T} > 1.5 {\rm ~GeV}$				
Beam mask: 2º(1º) - 5.8º				
No EM clusters with $E > 100 \text{ GeV}$				

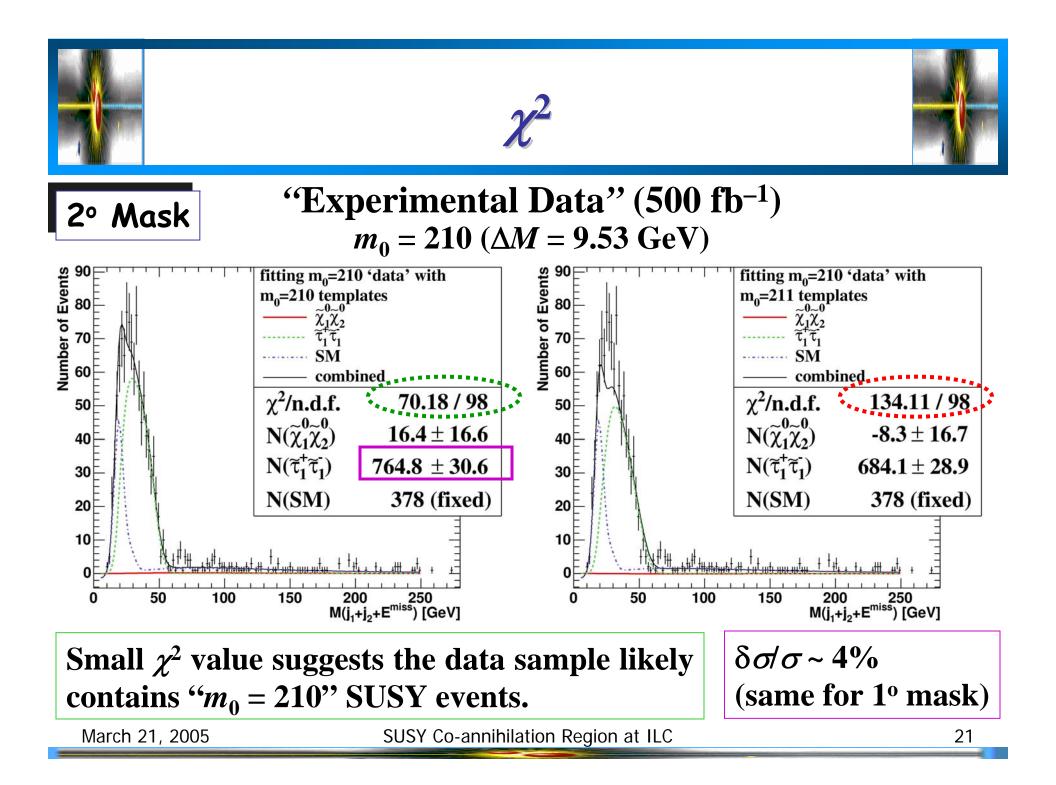
Note: cos(25.8°)=0.9, cos(5.8°)=0.995

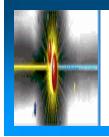

March 21, 2005



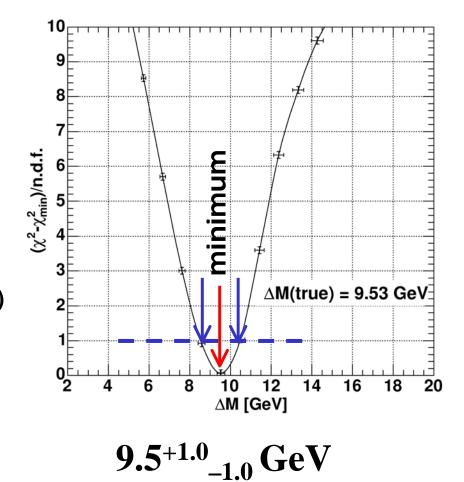

■ We need 1° to access to small *ΔM* at 500 GeV ILC!

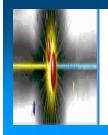

Acceptance vs. $m_{1/2}$

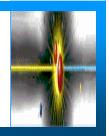




- Choose an effective mass of j_1 , j_2 and E^{miss} , $M(j_1, j_2, E^{\text{miss}})$, as a discriminator.
- Prepare three templates of the distribution of the effective mass for $\tilde{\chi}_1^0 \tilde{\chi}_2^0$, $\tilde{\tau}_1 \tilde{\tau}_1$ and SM.
- Fit a MC sample of 500 fb⁻¹ with the three templates to extract each contribution.

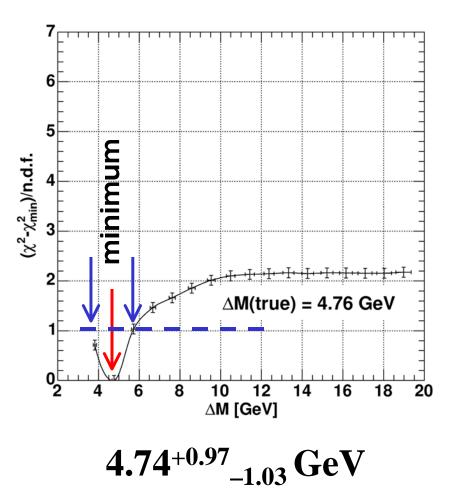


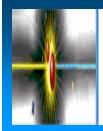



"Experimental Data" (500 fb⁻¹) $m_0 = 210 \ (\Delta M = 9.53 \text{ GeV})$ $m_{1/2} = 360$

Compared to

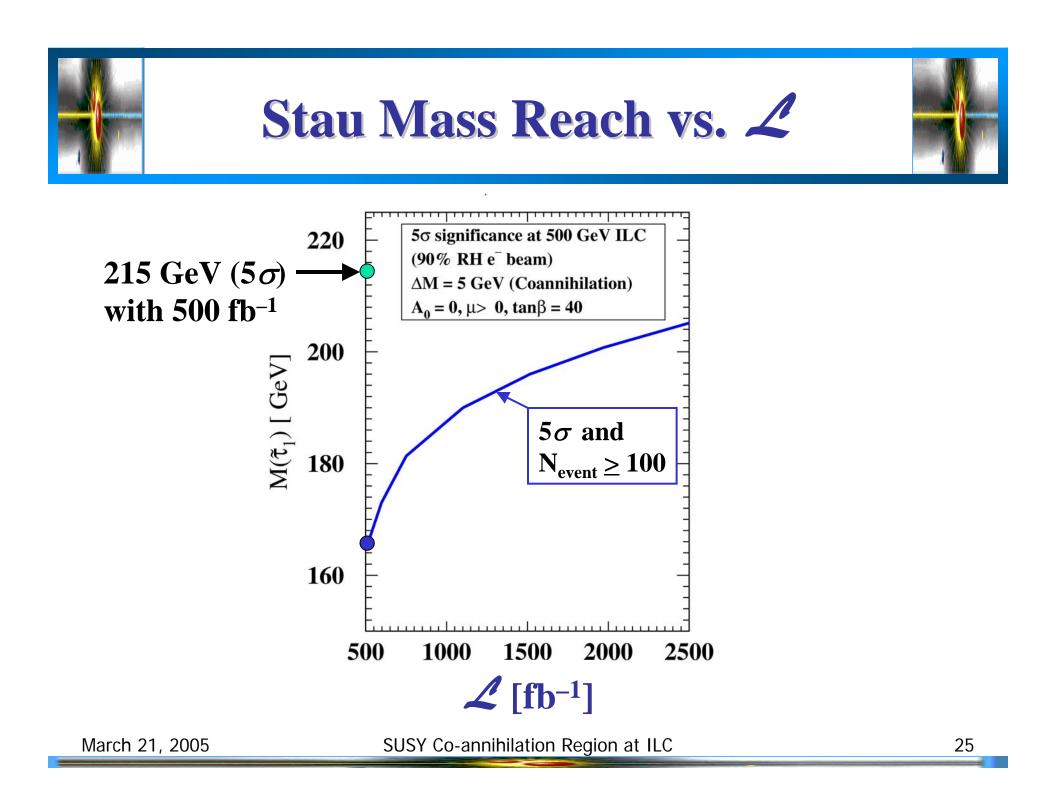
Templates (high statistics samples) $m_0 = 203 - 220$ $m_{1/2} = 360$

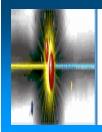


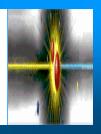

1° Mask

"Experimental Data" (500 fb⁻¹) $m_0 = 205 \ (\Delta M = 4.76 \text{ GeV})$ $m_{1/2} = 360$

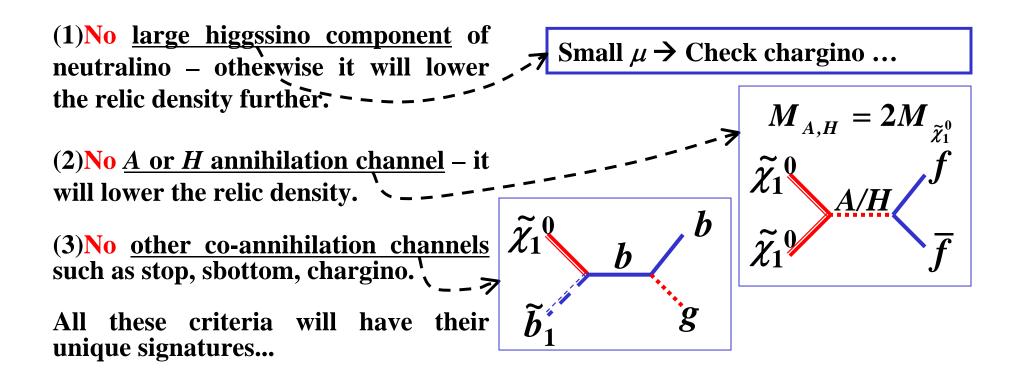
Compared to

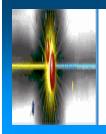

Templates (high statistics samples) $m_0 = 203 - 220$ $m_{1/2} = 360$



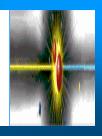


	(500 fb ⁻¹)	ΔM ("500 fb ⁻¹ experiment")		
$m_0(\Delta M)$	${f N}_{ ilde{ au_1} ilde{ au_1}}$	2° Mask	1° Mask	
205 (4.76 GeV)	122	Not determined	4.74 ^{+0.97} _{-1.03} GeV	
210 (9.53 GeV)	787	9.5 ^{+1.1} _{-1.0} GeV	9.5 ^{+1.0} _{-1.0} GeV	
213 (12.37 GeV)	1027	12.5 ^{+1.4} _{-1.4} GeV	12.5 ^{+1.1} _{-1.4} GeV	
215 (14.27 GeV)	1138	14.5 ^{+1.1} _{-1.4} GeV	14.5 ^{+1.1} _{-1.4} GeV	





Future Work



How do we know the stau-neutralino co-annihilation is responsible for the relic density?

- [1]The cosmologically allowed mSUGRA parameter space is examined using other possible experimental constraints, e.g., collider bounds, rare decay bounds.
- [2]The SUSY mass reaches are maximized via the $\tilde{\tau}_1 \tilde{\tau}_1$ and $\tilde{\chi}_1^0 \tilde{\chi}_2^0$ production.
- [3] The importance of 1° "active mask" to detect forward electron/positron to suppress γγ events especially for small ΔM.
 [4]δ(ΔM)/ΔM ~ 10% with
 - →Shape analysis using $M(j_1, j_2, E^{\text{miss}})$
 - \rightarrow 1° active beam mask (e.g., TESLA detector design)
 - → 500 fb⁻¹ with RH polarization for e^-