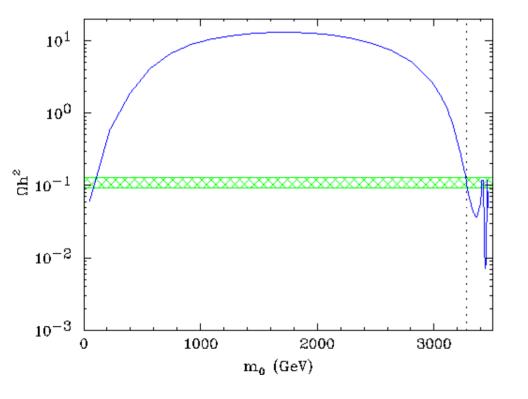
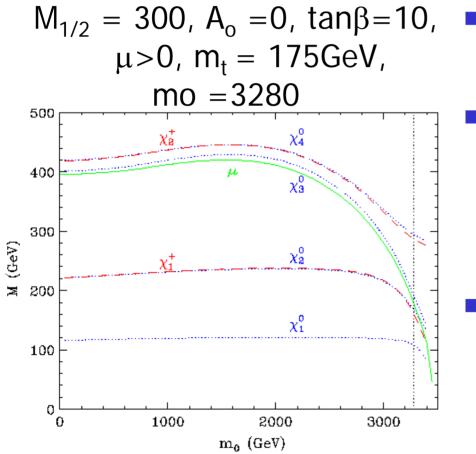
Measuring Mass and Cross Section Parameters at a Focus Point Region

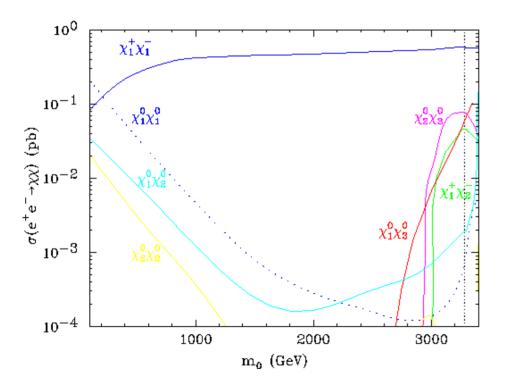

> Richard Gray Cornell University LCWS 2005

Cornell LC Cosmology Group

Jim Alexander, Karl Ecklund, Laura Fields, Richard Gray, Dan Hertz, Chris D. Jones, Surik Mehrabyan, Jim Pivarski (Cornell University)


Andreas Birkedal, Konstantin Matchev (University of Florida)

Introduction


- SUSY models have good dark matter candidates.
- But WMAP Ω_hh² limits relic densities
- We will study an MSUGRA focus point that is consistent with WMAP

Focus Point "LCC2"

- Scalars are very heavy
 - 2 Charginos (χ_i^+) 3 neutralinos (χ_j^0) will be accessible at $s^{\frac{1}{2}} = 500 \text{GeV}$
- χ₁⁰ is the LSP and the Dark Matter Candidate

Pair Production Cross Sections

We expect Signals from the following Neutralino/Chargino Pairs.

•
$$\chi_1^+ \chi_1^-$$

$$\mathbf{X}_1^+ \chi_2^-$$

•
$$\chi_1^{\circ}\chi_3^{\circ}$$

• $\chi_2^{\circ}\chi_3^{\circ}$

Cross Sections and Masses

Neutralino Mass
Parameters (GeV)

- χ_1^0 : -107.7
- χ_2^0 : -166.3
- χ_3^0 : +190.0
- χ₁⁺ : -159.4
- χ₂⁻ : -286.6

Pair	$\sigma_{\sf L}$ (fb)	${f \sigma}_{\sf R}$ (fb)
χ1 ⁺ χ1 ⁻	940	119
χ1 ⁺ χ2 ⁻	48.9	40.3
$\chi_1^0 \chi_3^0$	56.8	44.1
$\chi_2^0 \chi_3^0$	92.4	70.9

SUSY Decay Signatures

•
$$\chi_1^+ \chi_1^-$$
: $4J + E_{miss}$, $2J + 1L + E_{miss}$
• $\chi_1^+ \chi_2^-$: $6J + E_{miss}$, $4J + 2L + E_{miss}$
• $\chi_1^0 \chi_3^0$: $2J + E_{miss}$, $2L + E_{miss}$
• $\chi_2^0 \chi_3^0$: $4J + E_{miss}$, $4L + E_{miss}$, $2L + 2J + E_{miss}$

Note that the number of jets could be increased by radiated gluons

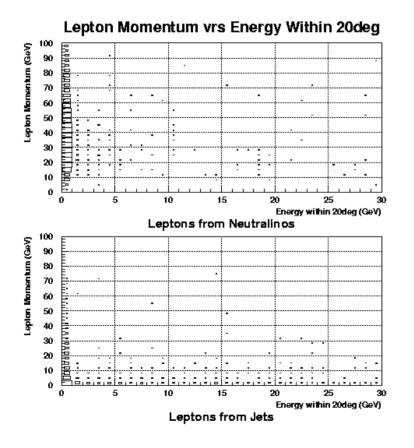
Analysis Goals

- Determine expected uncertainties in cross section measurements.
- Determine uncertainties in measuring mass differences with di-lepton or di-jet invariant mass distributions
- Measure relative sign (phase) of mass parameters
- Determine mass of LSP using di-lepton or dijet energy distributions

Monte Carlo Samples

SUSY

- Generated at Cornell by Karl Ecklund
- Isajet 7.69
- Includes : $\chi_1^+ \chi_1^-, \chi_1^+ \chi_2^-, \chi_1^0 \chi_3^0, \chi_2^0 \chi_3^0$


SM Backgrounds

- Generated at SLAC by Tim Barklow
- WHiZaRD 1.22
- Includes daughters from: e⁺e⁻, e⁻γ, γe⁺, γγ; such as ttbar, W⁺W⁻, Zpair

Monte Carlo (cont)

- Both SUSY and SM include Brems/Beamstrahlung (SUSY uses Isajet, SM uses CIRCE v1)
- Polarization: electron +/-95%, positron 0%
- Detector simulation done by LCD Root Fast MC, SD Mar01 (root based SLAC software)

Analysis: Signal Lepton Selection for SUSY Signature

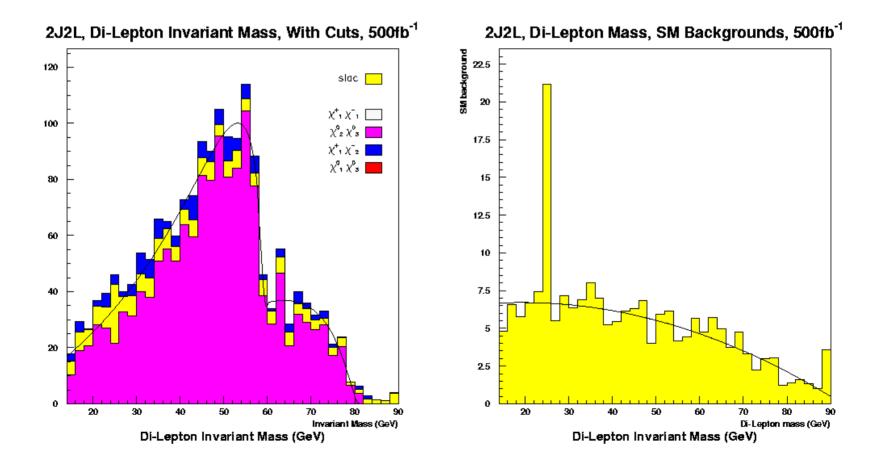
We want Leptons that are isolated from jets.

- Lepton ID uses MC truth
- P_{lepton} > 10GeV
- E20 < 2 GeV; Total energy of other tracks and showers within 20° of lepton should be less than 2GeV

Analysis: Jet Identification

- y_{cut}=0.004
- $y_{ij} = 2(min(E_i, E_j))^2 (1 cos(\theta_{ij})) / E_{cm}^2$
- y_{ij} < y_{cut} then jet-like

 Jet finding is done using the Durham Algorithm on all tracks, and unmatched showers, except for leptons identified as signal leptons MC Truth Jet Matching (Used in B-Tagging)


- Best match given by greatest Qij
- Qij = (2Eiaj-Einj-Ejni)/(Ei+Ej)
- Ei=Energy in list I
- Eiaj=Energy in list I and j
- Einj=Energy in list I but not J
- Qij = 1 Perfect match
- Qij = -1 completely different

Not able to do honest B-tag with simulation, so jets found by Durham Algorithm are given best match with MC Truth table, then use expected b-tag efficiency (~50%).

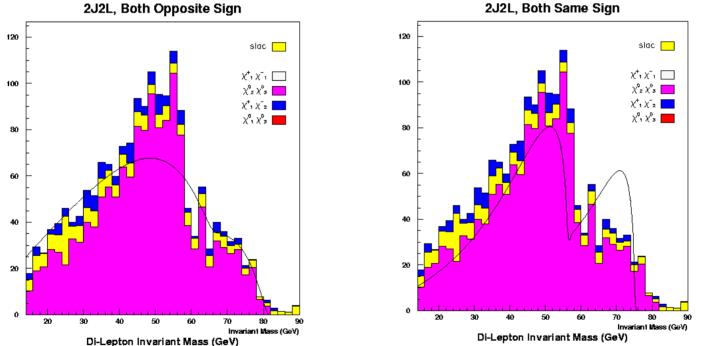
Event Selection: $\chi_2^0\chi_3^0 \rightarrow 2J2L\chi_1^0$

- 2 Isolated Leptons, opposite charge, same flavor
- 2 or 3 jets found. (allows for a gluon jet)
- E_{miss} > 275 GeV
- P_T > 10 GeV
- $|\cos(\theta)| < 0.95$ (all jets and leptons)
- E(j or L) < 110GeV</p>
- Anti-Btag to remove ttbar backgrounds.

2or3J2L Di-Lepton Invariant Mass Distribution

Analysis of Mass Distribution

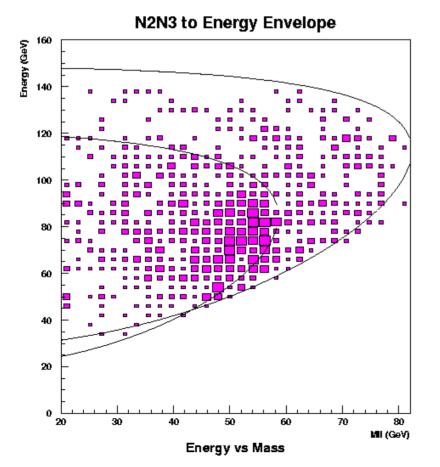
- Small Background
- Mass edges expected at 58.6GeV and 82.3GeV. Visible!
- We have a functional form for the distribution (A. Birkedal)
- The distribution is insensitive to LSP mass
- Expected Cross section uncertainty on σ_L and σ_R are each ~ +/-2.6fb (2.8%, 3.6%)
- Log Likelihood Fit to edges yields:


```
\Delta m21 = 58.7 \text{GeV} + 0.2 \text{GeV} - 0.1 \text{GeV}
```

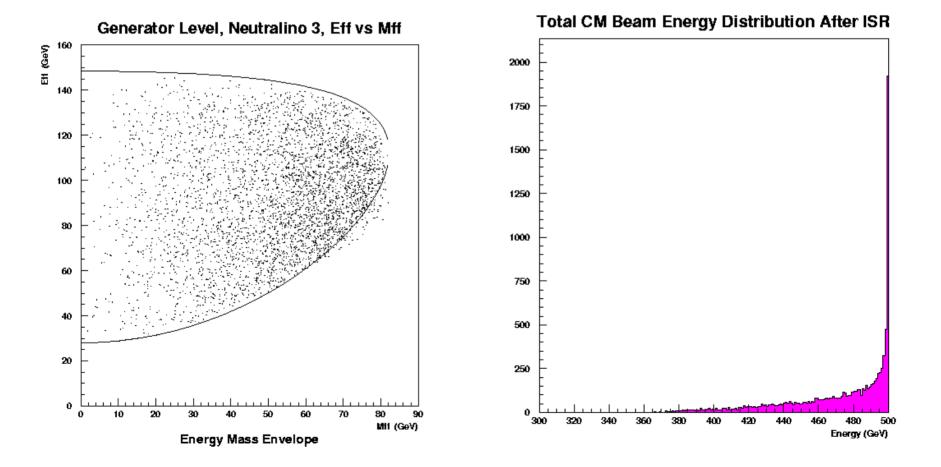
 $\Delta m31 = 82.0 \text{GeV} + 0.4 \text{GeV} - 0.1 \text{GeV}$

• We can also determine relative sign of mass parameters for $\chi_1{}^0$ $\chi_2{}^0$ $\chi_3{}^0$

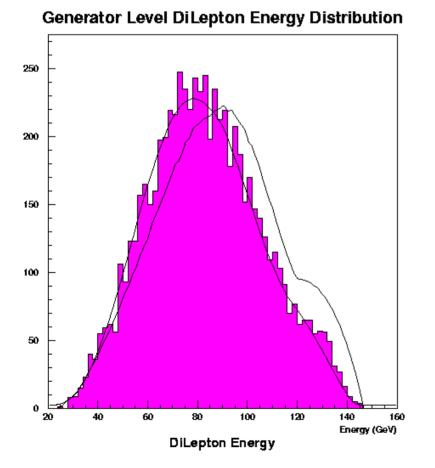
Determine Relative Sign of $m_{\chi 10}$, $m_{\chi 20}$, $m_{\chi 30}$


2J2L, Both Opposite Sign

 $\log[like(+m20,-m30)] - \log[like(-m20,-m30)] = 228$ equivalent to 21σ

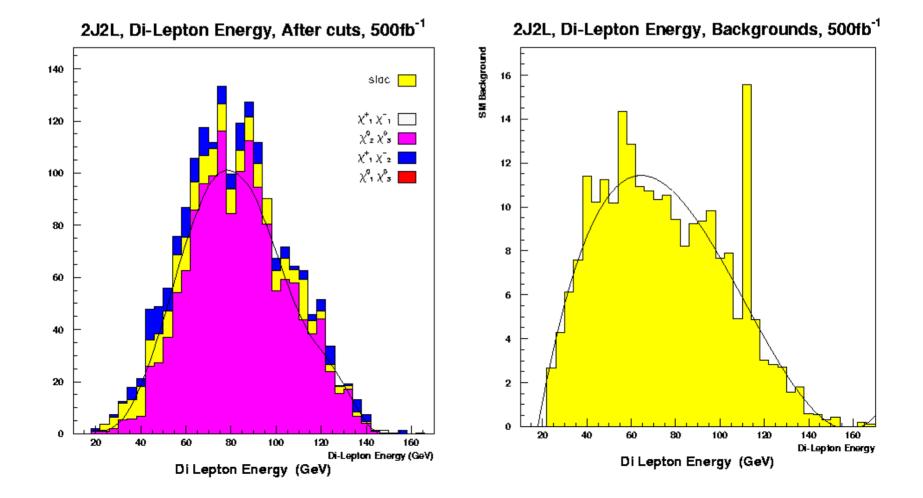

 $\log[like(+m20,-m30)] - \log[like(+m20,+m30)] = 84.7$ equivalent to 13σ

LSP Mass from E(LL) Distribution



- LSP mass sets boundaries in dilepton energy vs. mass.
- Because of low stats near boundary, will fit to 1-D energy histogram.

Beam/Breamstralung distorts Energy Envelope


Energy Distribution Numerically Calculated

Numerically Integrate

- Isajet ISR spectrum,
- Invariant mass distribution
- Isajet angular distribution (phase space)

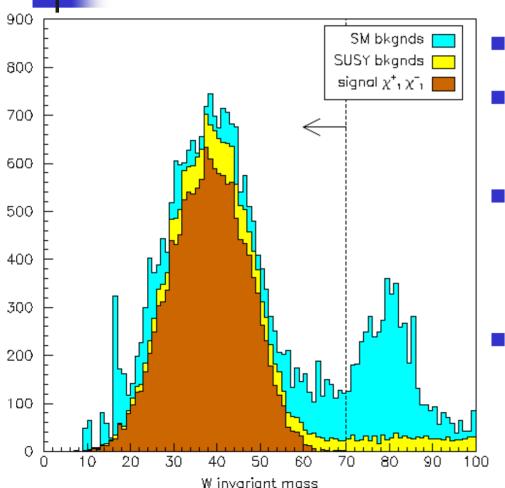
E(LL) Distribution

Log Likelihood Fit to E(LL)

 Using edges determined in mass analysis, results of Log Likelihood fit give:

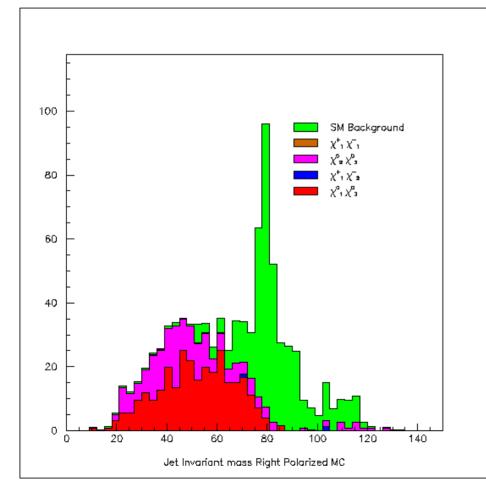
107.5GeV +0.5GeV -1.1 GeV

(true answer 107.7GeV)


Other Modes at Cornell

• $e^+e^- \rightarrow \chi_1^+\chi_1^- \rightarrow jjl + E_{miss}$ by Jim Pivarski

• $e^+e^- \rightarrow \chi_1^0 \chi_3^0$; $\chi_2^0 \chi_3^0 \rightarrow jj + E_{miss}$ by Laura Fields


• $e^+e^- \rightarrow \chi_1^+\chi_2^- \rightarrow 6j + E_{miss}$; $4j + 2L + E_{miss}$ by Dan Hertz

$e^+e^- \rightarrow \chi_1^+\chi_1^- \rightarrow jjl + E_{miss}$

- Study by Jim Pivarski
- will determine cross section uncertainty.
- Mass difference measurement should be possible
- Should give a second measure of M_{LSP}

$e^+e^- \rightarrow \chi_1^0 \chi_3^0; \chi_2^0 \chi_3^0 \rightarrow jj + E_{miss}$

- By Laura Fields
- W peak near edge, so no mass measurement
- Cross section of $\chi_1^0 \chi_3^0$ depends on $\chi_2^0 \chi_3^0$.
- $\chi_1^0 \chi_3^0$: $\delta \sigma_L \sim 5 fb^{-1}$ $\delta \sigma_R \sim 4 fb^{-1}$, or 9%

 $e^+e^- \rightarrow \chi_1^+\chi_2^- \rightarrow 6j + E_{miss};$ $4j + 2L + E_{miss}$

- By Dan Hertz
- Very Preliminary
- Mode has on shell W and Z emitted during chargino decay.
- There will be too few events for mass edges to be determined. But backgrounds should be small.
- Work to determine uncertainty in cross section measurement in progress.

Conclusions

- Mass differences of χ_2^0 and χ_3^0 with LSP mass can be measured with uncertainties <0.5GeV.
- Mass of LSP can be determined with 2J2L, E(LL) distribution with uncertainty ~ 1GeV.
- Cross sections of $\chi_2^0\chi_3^0$ can be determined with uncertainty ~2.6fb ($\sigma_L 2.8\%$, and σ_R to 3.6%)
- Cross sections of $\chi_1^0 \chi_3^0$ can be determined with ~9% uncertainty (L. Fields).

Current and Future Tasks

- Complete χ₁⁺χ₁⁻ analysis for cross section, χ₁⁺ mass difference, and second LSP mass measure (J. Pivarski)
- Complete χ₁⁺χ₂⁻ analysis for cross section (D. Hertz)
- Convert these uncertainties into uncertainties in MSUGRA parameters (M₁, M₂, μ, tanβ), and ultimately Ω_{DM}h² (A. Birkedal, K. Matchev)

Special Thanks

• T. Barklow for generating our SM backgrounds.