Testing Focus Point Cosmology at the NLC

Andreas Birkedal University of Florida, Gainesville

LCWS05, March 21st, 2005

Work in progress, with experimental collaborators from Cornell (Jim Alexander, Karl M. Ecklund, Laura Fields, **Richard Gray**, Dan Hertz, Chris Jones, Surik Mehrabyan and Jim Pivarski) and Konstantin Matchev (Florida).

The Big Goal

This talk investigates the following question:

- Assume: LHC has run, 'discovered' SUSY, made the expected measurements
- Now assume: linear collider has run, made expected measurements
- What will be the theoretical uncertainty in $\Omega_{dm}h^2$ (the neutralino relic density) post-NLC?

Today: A report¹ on our progress.

¹More detail can be found during **Richard Gray**'s talk later today!

Last year at ALCPG04, results from a 'bulk point':

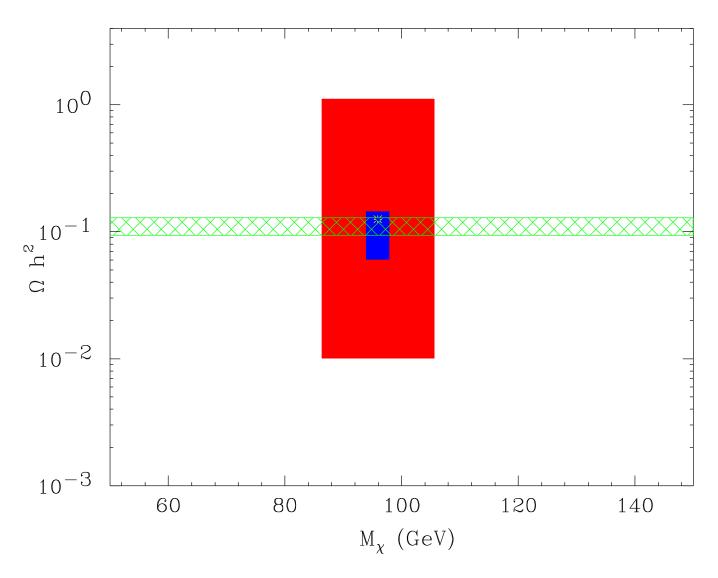


Figure 1: Dark Matter Power of the Linear Collider For the

mSUGRA point $m_0=57$ GeV, $m_{1/2}=250$ GeV, $\tan\beta=10, sgn(\mu)=+1, A_0=0.$ A. Birkedal and K. Matchev, 2004

Today, first results regarding a focus point.

- The Big Goal
- Dark Matter and Supersymmetry
- Discovering Dark Matter at a Collider
- The Linear Collider
- Conclusions

²All RGEs have been run using ISAJET 7.69, physical spectra and relic densities have been calculated using DarkSUSY, except where otherwise noted.

Dark Matter and Supersymmetry

Dark Matter \rightarrow WMAP constraints:

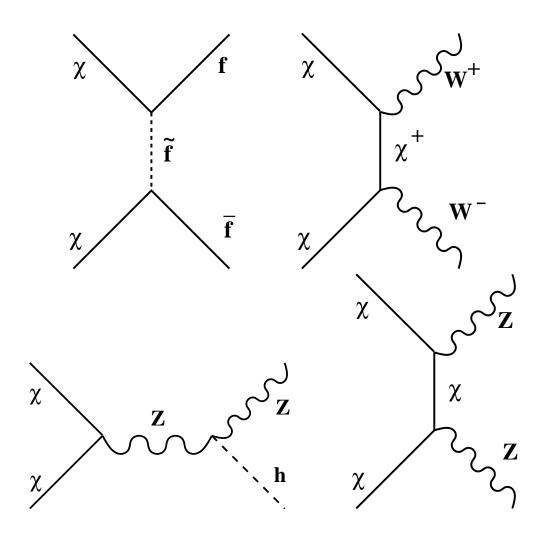
$$0.094 \leq \Omega_{dm} h^2 \leq 0.129$$
 (at 2σ)

Simplest: neutral particle, stable on cosmological timescales.

In practice:

$$\Omega_{dm}h^2 = \frac{\rho_{dm}}{\rho_{crit}}h^2 = \frac{m_{dm}n_{dm}}{\rho_{crit}}h^2 \sim 0.1\frac{\langle\sigma v\rangle_{EW}}{\langle\sigma v\rangle} \quad (1)$$

WIMP (weakly interacting massive particle) is good!


SUSY theories:

- contains WIMPS: spin-1/2 partners of the photon, Z, and two Higgses (neutralinos).
- LSP (lightest superpartner) is stable from R-parity.
- Often the LSP is the lightest neutralino.

Discovering Dark Matter at a Collider

If a collider measures some masses of a broken SUSY theory, how well can we determine the relic density, $\Omega_{dm}h^2$?

 generic set of annihilation diagrams → many masses → try to measure every input into the relic density calculation → dead end

As a start:

 Hope that the world exists at a point in SUSY parameter space where not all of the masses are important. Then hope to measure a few masses accurately enough to bound the relic density.

As an illustrative example, take a focus point in mSUGRA: $\tan \beta = 10$, $sgn(\mu) = +1$, $m_0 = 3280$, $m_{1/2} = 300$, $A_0 = 0$.

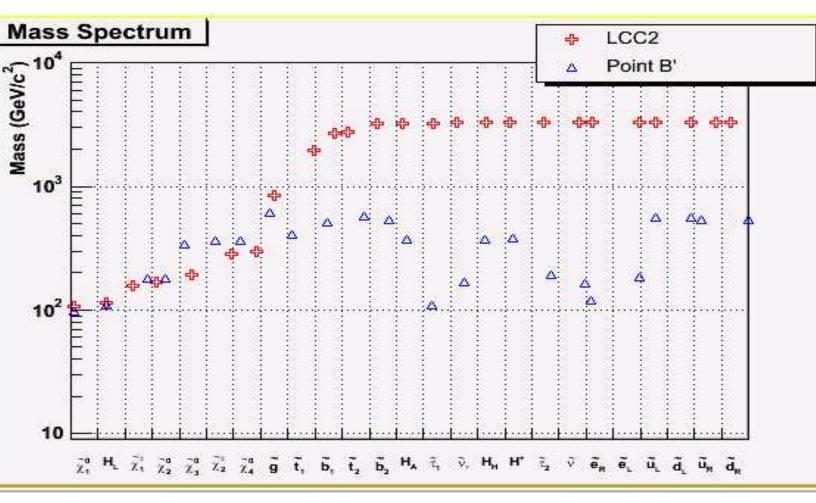


Figure 2: From R.C. Group and B. Scurlock.

Nice! The -inos are relatively light (in GeV): $m_{\chi_1^0} = -107.7, m_{\chi_2^0} = -166.3, m_{\chi_3^0} = +190.0,$ $m_{\chi_4^0} = -294.2, m_{\chi_1^\pm} = -159.4, m_{\chi_2^\pm} = -286.6$

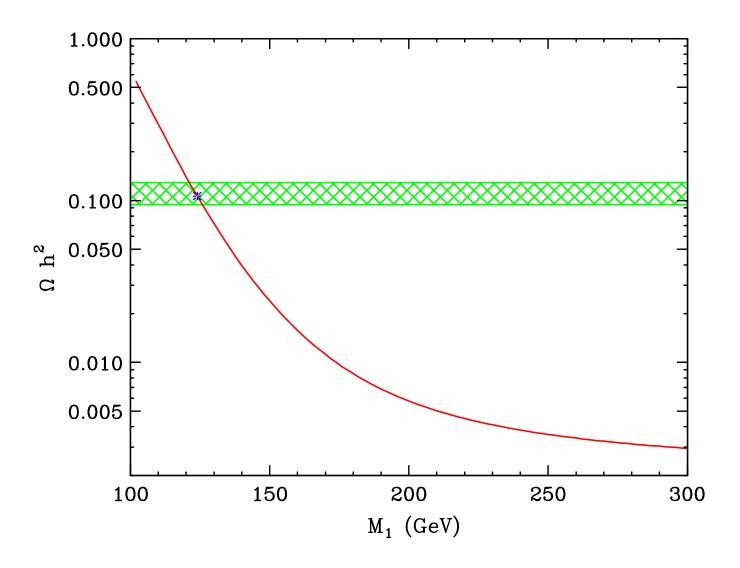
- all of the sleptons are above 3200 GeV
- all of the squarks are above 1950 GeV
- the gluino weighs in at 850 GeV

Another reason to like this point:

 dominant diagrams for dark matter → SM gauge boson, neutralino and chargino exchange.

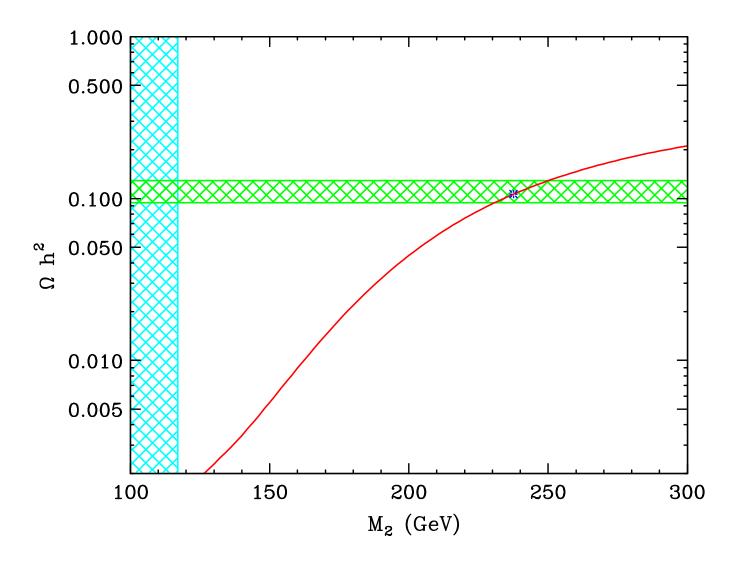
So, we can hope to see the most important -inos and thereby determine the relic density.

What are the key soft parameters in determining the relic density? Let's see...

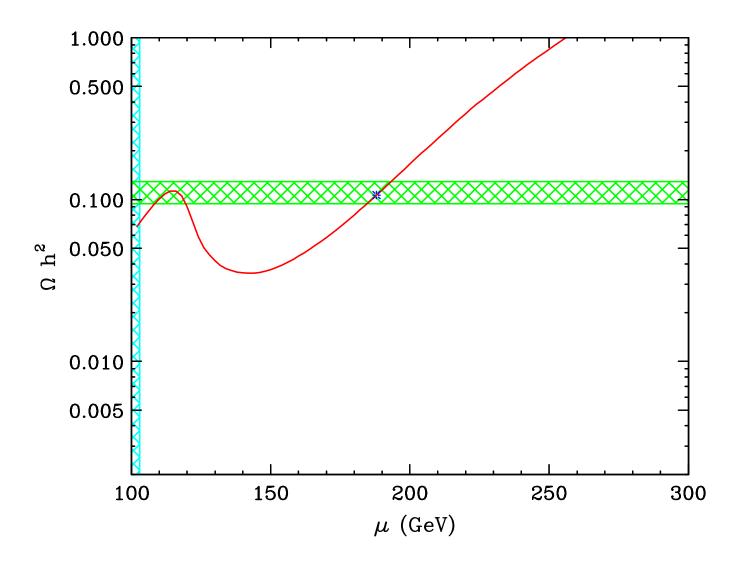

Very little effect from sleptons or squarks. What about the -ino sector parameters?

Neutralinos:

$$\begin{pmatrix} M_{1} & 0 & -s_{W}c_{\beta}M_{Z} & s_{W}s_{\beta}M_{Z} \\ 0 & M_{2} & c_{W}c_{\beta}M_{Z} & -c_{W}s_{\beta}M_{Z} \\ -s_{W}c_{\beta}M_{Z} & c_{W}c_{\beta}M_{Z} & 0 & -\mu \\ s_{W}s_{\beta}M_{Z} & -c_{W}s_{\beta}M_{Z} & -\mu & 0 \end{pmatrix}$$
(2)


Charginos:

$$\begin{pmatrix} M_2 & \sqrt{2}s_{\beta}M_W \\ & & \\ \sqrt{2}c_{\beta}M_W & \mu \end{pmatrix}$$
(3)


Figure 3: Effect on Relic Density of Varying M_1 . The actual

mSUGRA point is in blue. The green lines denote the 2- σ WMAP limits on the dark matter density. The red line shows what happens to the relic density as a function of M_1 .

Figure 4: Effect on Relic Density of Varying M_2 . The actual

mSUGRA point is in blue. The green lines denote the 2- σ WMAP limits on the dark matter density. The red line shows what happens to the relic density as a function of M_2 .

Figure 5: Effect on Relic Density of Varying μ . The actual mSUGRA point is in blue. The green lines denote the 2- σ WMAP limits on the dark matter density. The red line shows what happens to the relic density as a function of μ .

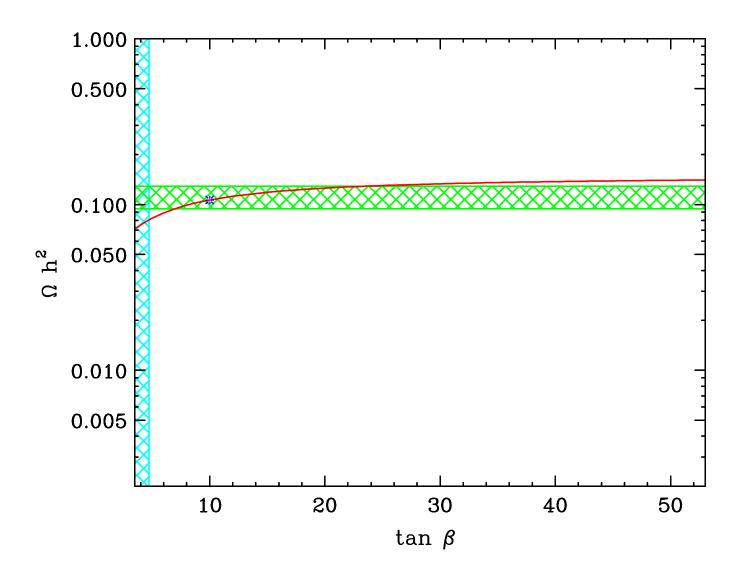
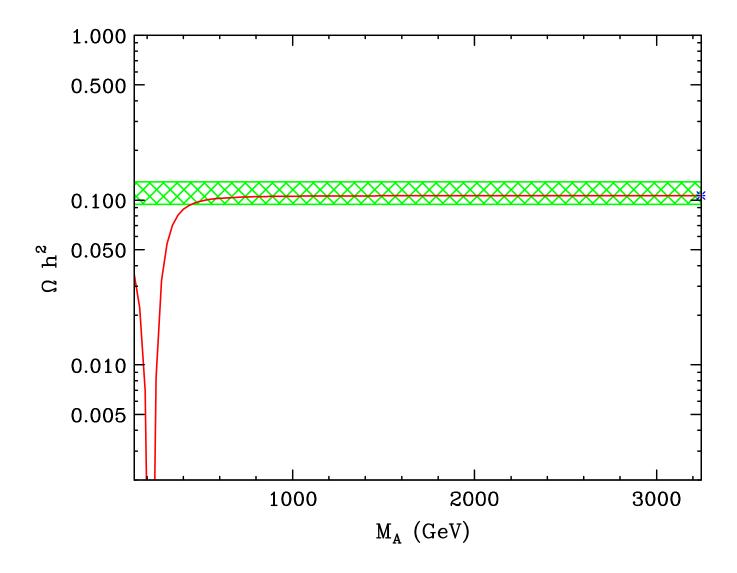



Figure 6: Effect on Relic Density of Varying $\tan \beta$. The actual mSUGRA point is in blue. The green lines denote the 2- σ WMAP limits on the dark matter density. The red line shows what happens to the relic density as a function of $\tan \beta$.

And how much varying m_A changes the relic density:

Figure 7: Effect on Relic Density of Varying m_A . The actual mSUGRA point is in blue. The green lines denote the 2- σ WMAP limits on the dark matter

density. The red line shows what happens to the relic density as a function of m_A .

The Linear Collider

What can we measure with a 500 GeV linear collider? Lots!

But, how well can we pin down M_1 , M_2 , μ and $\tan\beta$?

- $h, \chi_1^0, \chi_2^0, \chi_3^0, \chi_1^\pm, \chi_2^\pm$ should be visible
- we can tell that all other sparticles have masses above 250 GeV (at least)
- M_1 , M_2 , μ and $\tan \beta$ from accurate measurement of the decays of χ^0 's and χ^{\pm} 's.
- We are investigating production and decay of $\chi_1^+\chi_2^-$, $\chi_1^+\chi_1^-$, $\chi_1^0\chi_3^0$ and $\chi_2^0\chi_3^0$ using $500fb^{-1}$ of 90% polarized e^+e^- data ($250fb^{-1}$ left-polarized and $250fb^{-1}$ right-polarized) simulated for a 500 GeV linear collider.

• Each decay (such as $\chi_2^+ \rightarrow \chi_1^0 W^* \rightarrow \chi_1^0 f f'$) has a dilepton (or possible dijet) invariant mass distribution such as:

$$\frac{d\Gamma_{\chi_{1}^{+}}}{dm_{ff'}} \propto \frac{m_{ff'} \sqrt{\left(m_{2}^{2} - m_{1}^{2}\right)^{2} - 2m_{ff'}^{2}\left(m_{2}^{2} + m_{1}^{2}\right) + m_{ff'}^{4}}}{\left(m_{ff'}^{2} - m_{W}^{2}\right)^{2}} \times \left(\left(m_{1}^{4} + m_{2}^{4} + m_{ff'}^{2}m_{2}^{2} - 2m_{ff'}^{4} + m_{1}^{2}\left(m_{ff'}^{2} - 2m_{2}^{2}\right)\right) - 6\zeta\epsilon_{1}\epsilon_{2}m_{ff'}^{2}m_{1}m_{2}\right).$$
(4)

where
$$\zeta = \frac{|C_V^{\chi_1^+\chi_1^0W^-}|^2 - |C_A^{\chi_1^+\chi_1^0W^-}|^2}{|C_V^{\chi_1^+\chi_1^0W^-}|^2 + |C_A^{\chi_1^+\chi_1^0W^-}|^2}$$

- Even easier kinematic endpoints determine $m_{ff',max} = m_2 m_1$ (Here for $2 \rightarrow 1 f f'$), so we can find kinematic endpoints and then fit to both distributions *and* endpoints.
- Additional information is needed to find m_2 and m_1 separately. This is supplied by also looking at the distribution of the dilepton energy, $E_{ff'}$.
- The upper and lower limits of $E_{ff'}$ depend on $m_{ff'}$, this relationship is given by:

$$m_{ff'}\left(E_{ff'}\right) = \sqrt{E_{ff'}^2 - \left(p_2 - \sqrt{\left(E_2 - E_{ff'}\right)^2 - m_1^2}\right)^2}$$
(5)

Given enough statistics, it is even possible to fit to this 2-d distribution:

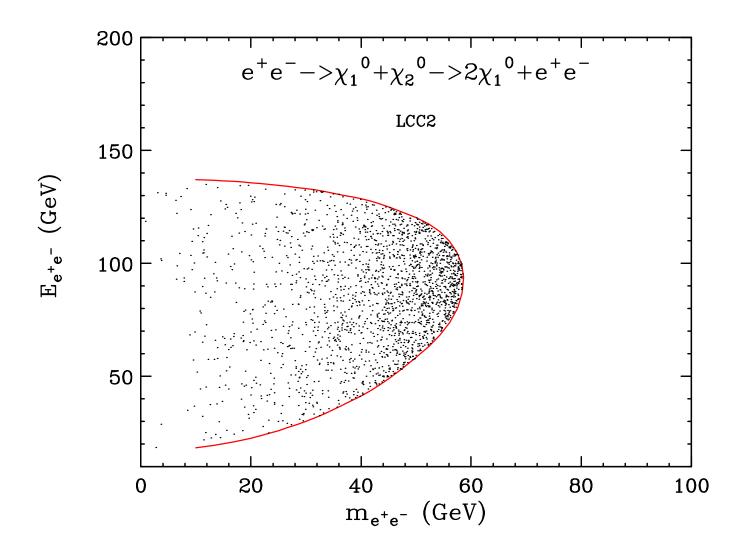


Figure 8: 2-d distribution of $m_{e^+e^-}$ vs. $E_{e^+e^-}$. The red line shows the envelope function.

Summary of Backgrounds and Cuts

- $e^+e^- \rightarrow \chi_1^+\chi_1^- \rightarrow jjl + E$ Require one isolated lepton Main background is W^+W^- pair production $|\cos \theta_j| < 0.8, E > 300$ GeV, $m_{jj} < 70$ GeV, $E_l > 15$ GeV, $N_{tracks} > 10$.
- $e^+e^- \rightarrow \chi_1^0\chi_3^0, \chi_2^0\chi_3^0 \rightarrow jj + E$ Main backgrounds: W^+W^-, ZZ and $\chi_1^+\chi_1^ |\cos \theta_j| < 0.9, E > 350$ GeV, $p_T > 50$ GeV Must also include a b-tag for left polarized electrons.

GeV

We also need an anti b-tagging cut to reduce tt further.

 $\chi_2^0 \chi_3^0 \to jj(j)ll + \not\!\!\!E$

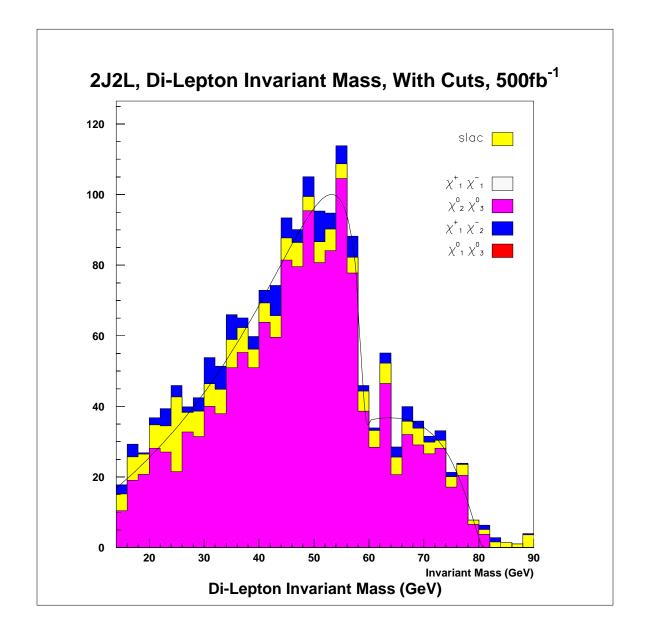


Figure 9: Dilepton invariant mass distribution for $\chi_2^0 \chi_3^0 \rightarrow 2(or3)j2l.$

Sample Preliminary Results

- $m_{\chi_1^0} = 107.5^{+0.5}_{-1.1}$ GeV (Input value is 107.7 GeV)
- $m_{\chi^0_2} m_{\chi^0_1} = 58.7^{+0.2}_{-0.1}$ GeV (Input value is 58.6 GeV)
- $m_{\chi^0_3} m_{\chi^0_1} = 82.0^{+0.4}_{-0.1}$ GeV (Input value is 82.3 GeV)

Current and Future Tasks

- Cross-check with the SLAC sample of SM background (thanks T. Barklow and company!).
- Finish analyses on all channels
- Convert measurements of $\chi^{0,\pm}$ masses and σ s into M_1 , $M_2,\,\mu,\, aneta$
- Determine lower limits on \tilde{l} , \tilde{q} , H and A masses
- Determination the accuracy of LC measurement of $\Omega_{DM}h^2$

Finally, a big 'Thanks!'³ to T. Barklow, J. Feng, R.C. Group, M. Peskin, B. Scurlock and many others for continued support and suggestions thus far.

³'Thanks' in more modern language is a 'shout-out.'