Electroweak precision observables in the NMFV MSSM

Siannah Peñaranda, CERN

based on collaboration with S. Heinemeyer, W. Hollik and F. Merz Eur.Phys.J.C37, 481-493, 2004, hep-ph/0403228

- 1. Introduction
- 2. Results for M_W and $\sin^2 \theta_{\rm eff}$
 - Results for $\Delta \rho$
- 3. Results for M_{h^0}
- 4. Conclusions

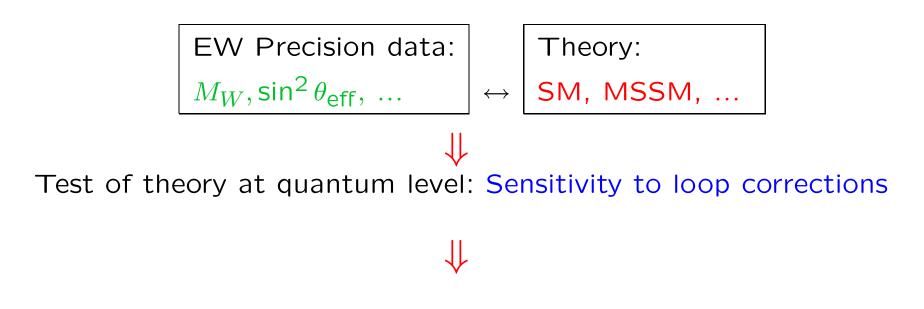
S. Peñaranda, LCWS05, Stanford, 21.03.2005

1. Introduction

Precision Observables:

An alternative way, as compared to the direct search for SUSY or Higgs particles, is to probe SUSY via virtual effects of the additional non-standard particles to precision observables.

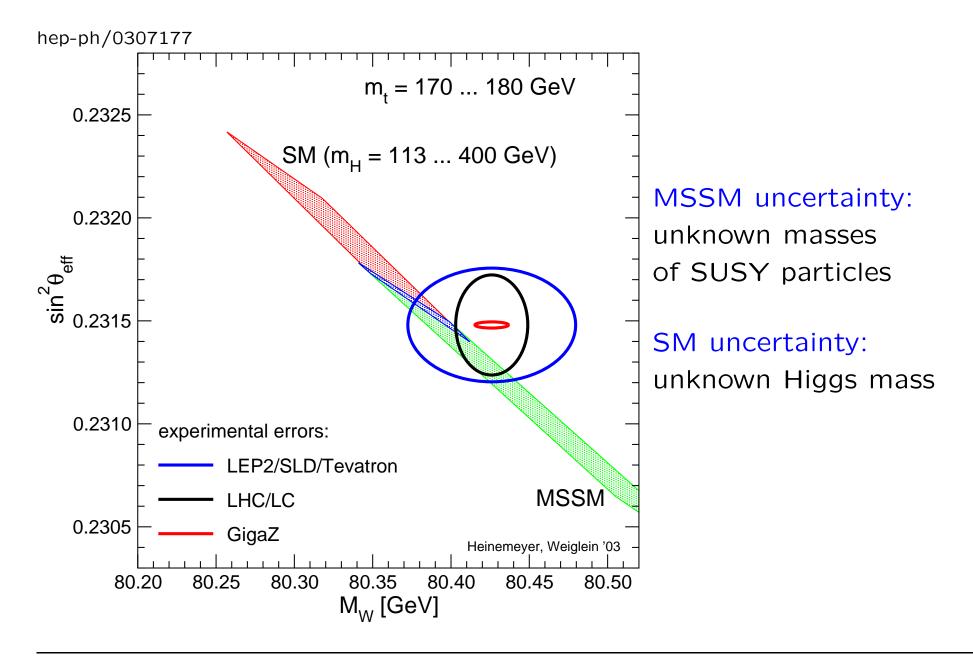
Comparison of electro-weak precision observables with theory:



Very high accuracy of measurements and theoretical predictions needed

- Which model fits better?
- Does the prediction of a model contradict the experimental data?
- S. Peñaranda, LCWS05, Stanford, 21.03.2005

Example: Prediction for M_W and $\sin^2 \theta_{eff}$ in the SM and the MSSM :



S. Peñaranda, LCWS05, Stanford, 21.03.2005

NMFV in the MSSM

NMFV: Non Minimal Flavor Violation

 \rightarrow Mixing of scalar quark families (beyond CKM)

We consider the general case of mixing between the third and second generation of squarks (\tilde{t}/\tilde{c} and \tilde{b}/\tilde{s} sectors)

E.g. Mixing of stop/scharm

$$(\tilde{t}_L, \tilde{t}_R, \tilde{c}_L, \tilde{c}_R) \begin{pmatrix} \tilde{T} & 0 \\ 0 & \tilde{C} \end{pmatrix} \begin{pmatrix} \tilde{t}_L \\ \tilde{t}_R \\ \tilde{c}_L \\ \tilde{c}_R \end{pmatrix} \Rightarrow (\tilde{t}_L, \tilde{t}_R, \tilde{c}_L, \tilde{c}_R) \begin{pmatrix} \tilde{T} \neq 0 \\ \neq 0 & \tilde{C} \end{pmatrix} \begin{pmatrix} \tilde{t}_L \\ \tilde{t}_R \\ \tilde{c}_L \\ \tilde{c}_R \end{pmatrix}$$

add NMFV

• mixing between the 3^{rd} and 2^{nd} generation squarks can be numerically significant due to the involved third-generation Yukawa couplings

• experimentally only partially restricted (most stringest constraints are given by $B(b \rightarrow s\gamma)$)

• strong experimental bounds involving the 1^{st} generation, coming from data on $K^0-\bar{K}^0$ and $D^0-\bar{D}^0$ mixing

F. Gabbiani et al, hep-ph/9604387; M. Misiak et al, hep-ph/9703442...

Squark Generation Mixing via Soft Breaking

Parametrization of non-diagonal squark mass matrices

$$M_{\tilde{u}}^{2} = \begin{pmatrix} M_{\tilde{L}c}^{2} & \Delta_{LL}^{t} & m_{c}X_{c} & \Delta_{LR}^{t} \\ \Delta_{LL}^{t} & M_{\tilde{L}t}^{2} & \Delta_{RL}^{t} & m_{t}X_{t} \\ m_{c}X_{c} & \Delta_{RL}^{t} & M_{\tilde{R}c}^{2} & \Delta_{RR}^{t} \\ \Delta_{LR}^{t} & m_{t}X_{t} & \Delta_{RR}^{t} & M_{\tilde{R}t}^{2} \end{pmatrix}$$

$$M_{\tilde{L}_{q}}^{2} = M_{\tilde{Q}_{q}}^{2} + m_{q}^{2} + \cos 2\beta M_{Z}^{2} (T_{3}^{q} - Q_{q} s_{W}^{2})$$

$$M_{\tilde{R}_{q}}^{2} = M_{\tilde{U}_{q}}^{2} + m_{q}^{2} + \cos 2\beta M_{Z}^{2} Q_{q} s_{W}^{2} (q = t, c)$$

$$X_{q} = A_{q} - \mu (\tan \beta)^{-2T_{3}^{q}}$$

Similarly for the \tilde{b}/\tilde{s} sector $(t \leftrightarrow b\,, c \leftrightarrow s)$

Mass eigenstates :

In order to diagonalize the two 4×4 squark mass matrices, two 4×4 rotation matrices, $R_{\tilde{u}}$ and $R_{\tilde{d}}$, are needed.

S. Peñaranda, LCWS05, Stanford, 21.03.2005

Analytical result:

evaluation with arbitrary NMFV couplings

Numerical result (Simplest scenario)

 \rightarrow RGE indicate that the largest entries are those connected to the SUSY partners of the left-handed quarks, Δ_{LL}

- P. Brax, C. Savoy, Nucl. Phys. B 447 (1995) 227, hep-ph/9503306
- K. Hikasa and M. Kobayashi, Phys. Rev. D 36 (1987) 724
- → Δ_{LL} scale with the square of diagonal soft SUSY-breaking masses M_{SUSY} Δ_{LR} and Δ_{RL} terms scale linearly and Δ_{RR} with zero power of M_{SUSY} $\Rightarrow \Delta_{LL} \gg \Delta_{LR,RL} \gg \Delta_{RR}$

Mixing only between the left-handed components of \tilde{t},\tilde{c} and \tilde{b},\tilde{s}

$$\Delta_{LL}^{t} = \lambda^{t} M_{\tilde{L}_{t}} M_{\tilde{L}_{c}}, \qquad \Delta_{LR}^{t} = \Delta_{RL}^{t} = \Delta_{RR}^{t} = 0,$$

$$\Delta_{LL}^{b} = \lambda^{b} M_{\tilde{L}_{b}} M_{\tilde{L}_{s}}, \qquad \Delta_{LR}^{b} = \Delta_{RL}^{b} = \Delta_{RR}^{b} = 0.$$

 $\rightarrow \lambda^t = \lambda^b = 0$ corresponds to the MSSM with MFV $\rightarrow \lambda^t$ and λ^b correspond to $(\delta^u_{LL})_{23}$ and $(\delta^d_{LL})_{23}$

2. Results for M_W and $\sin^2 heta_{ m eff}$

 M_W Theoretical prediction for M_W in terms of M_Z , α , G_μ , Δr :

 Δr depends on the entire set of input parameters $\Delta r = \Delta r(\alpha, M_W, M_Z, m_t, ..., M_{SUSY}...)$ contains photon vacuum polarization, γ, Z, W self-energies, box and vertex corrections

Effective mixing angle:

$$\sin^2 heta_{ ext{eff}} = rac{1}{4 \left| Q_f
ight|} \left(1 - rac{\operatorname{Re} g_V^f}{\operatorname{Re} g_A^f}
ight)$$

Higher order contributions:

$$\begin{array}{ccc} g_V^f \to g_V^f + \Delta g_V^f, & g_A^f \to g_A^f + \Delta g_A^f \\ \uparrow & \uparrow \\ \Delta r & \Delta r \end{array}$$

All EW loop effects in Z-boson decays are concealed in the effective couplings g_V^f, g_A^f

Corrections to M_W , $\sin^2 \theta_{eff}$

The shift in M_W and $\sin^2 \theta_{\text{eff}}$ caused by a variation of Δr reads

$$\begin{split} \delta M_W &= -\frac{M_W}{2} \frac{s_W^2}{c_W^2 - s_W^2} \,\delta(\Delta r) \\ \delta \sin^2 \theta_{\text{eff}} &= \frac{c_W^2 s_W^2}{c_W^2 - s_W^2} \,\delta(\Delta r) \\ -s_W c_W \left[\frac{\Sigma_{\gamma Z}(M_Z^2)}{M_Z^2} - \frac{c_W}{s_W} \left(\frac{\Sigma_Z(M_Z^2)}{M_Z^2} - \frac{\Sigma_W(M_W^2)}{M_W^2} \right) \right] \end{split}$$

As fas as $\delta(\Delta r)$ originates from squarks -loop contributions to the self energies only:

$$\delta(\Delta r) = \Sigma_{\gamma}'(0) - \frac{c_W^2}{s_W^2} \left(\frac{\Sigma_Z(M_Z^2)}{M_Z^2} - \frac{\Sigma_W(M_W^2)}{M_W^2} \right) + \frac{\Sigma_W(0) - \Sigma_W(M_W^2)}{M_W^2}$$

Flavor mixing through the flavor non-diagonal entries in the squark-mass matrices

S. Peñaranda, LCWS05, Stanford, 21.03.2005

Numerically verified:

 $\Delta \rho$ is an excellent approximation for the full calculation \Rightarrow concentrate on $\Delta \rho$ (but full calculation is available)

Corrections to M_W , $\sin^2 \theta_{eff}$ can be approximated with the ρ -parameter: ρ measures the relative strength between neutral current interaction and charged current interaction

$$ho = rac{1}{1 - \Delta
ho} \qquad \Delta
ho = rac{\Sigma_Z(0)}{M_Z^2} - rac{\Sigma_W(0)}{M_W^2}$$

 $\Delta \rho$ represents the leading universal corrections to the EW precision observables induced by mass splitting between partners in isospin doublets

 $\Delta \rho$ gives the main contribution to:

$$\delta M_W \approx \frac{M_W}{2} \frac{c_W^2}{c_W^2 - s_W^2} \Delta \rho, \qquad \qquad \delta \sin^2 \theta_W^{\text{eff}} \approx -\frac{c_W^2 s_W^2}{c_W^2 - s_W^2} \Delta \rho$$

 \Rightarrow Experimental bound: $\Delta \rho \lesssim 2 \times 10^{-3}$

S. Peñaranda, LCWS05, Stanford, 21.03.2005

Feynman diagrams for $\Delta \rho$: \tilde{u}_{α} Z Z Z Z Z Z \tilde{u}_{α} \tilde{u}_{α}

Numerical analysis performed in 2 benchmark scenarios, but with a free scale $M_{\rm SUSY}$:

M. Carena et. al, hep-ph/0202167

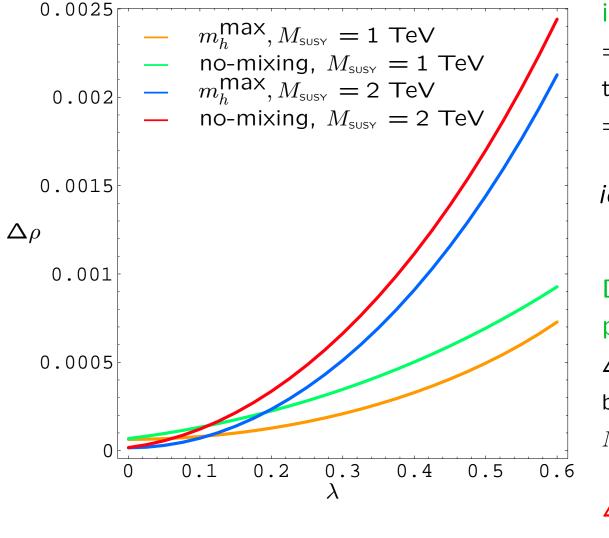
- $-M_{h0}^{\text{max}}$ (A_t is not a free parameter, obeying $X_t = 2M_{\text{SUSY}}$, with $X_t = A_t \mu \cot \beta$)
- no-mixing (no mixing in the MFV \tilde{t} sector ($X_t = 0$))

The same flavor mixing parameter in the \tilde{t}/\tilde{c} and \tilde{b}/\tilde{s} sectors is assumed: $\lambda = \lambda^t = \lambda^b$

A large difference between λ^t and λ^b is not allowed: LL blocks of the up- and down-squark mass matrices are not independent because of the SU(2) gauge invariance. *M. Misiak, S. Pokorski and J. Rosiek, hep-ph/9703442.*

S. Peñaranda, LCWS05, Stanford, 21.03.2005

$\Delta \rho$ as a function of λ :



increasing λ

⇒ increasing mixing, splitting in the squarks sector ⇒ increasing $\Delta \rho$

idem when increasing M_{SUSY}

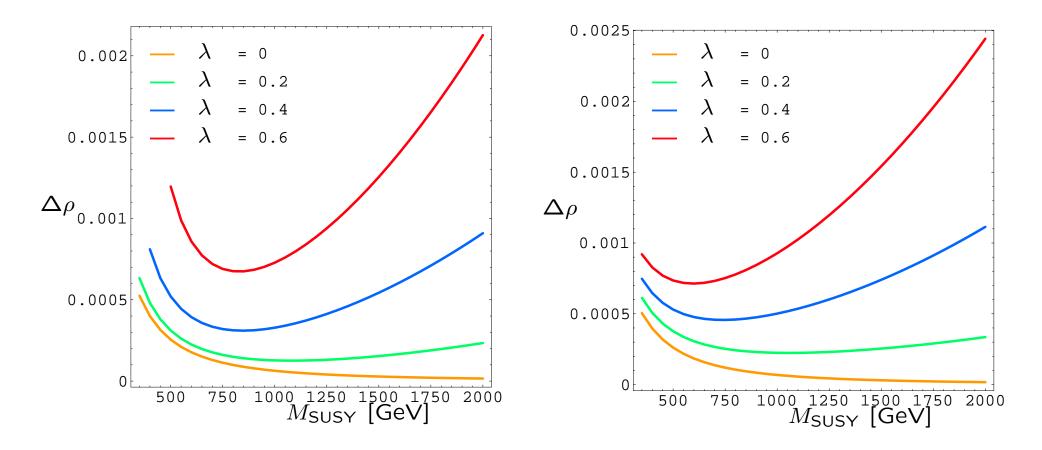
Decoupling for $\lambda = 0$ as expected

 $\Delta \rho^{\tilde{q}}$ grows with the λ parameter, being close to zero for $\lambda = 0$ and $M_{\rm SUSY} = 2$ TeV.

 $\Delta\rho \lesssim 2\times 10^{-3}$ can be saturated

$\Delta \rho$ as a function of M_{SUSY} :

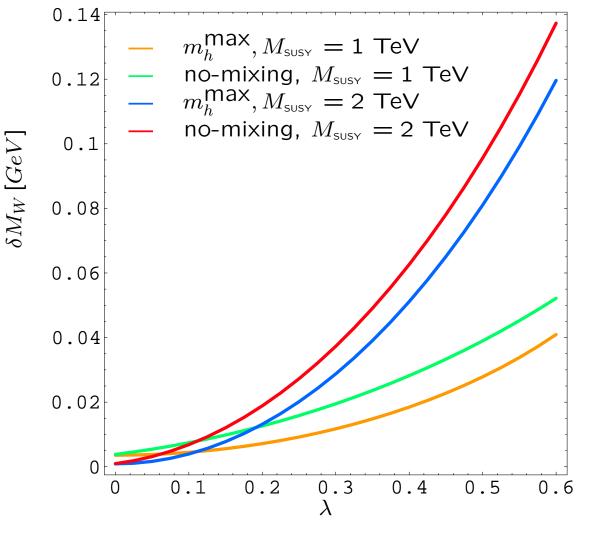
no-mixing scenario



 \rightarrow decoupling for $\lambda = 0$ as expected

 $\rightarrow \lambda \neq 0$: minimum at moderate M_{SUSY} increase for large M_{SUSY} (due to enlarged mixing)

δM_W as a function of λ :



follows the behavior of $\Delta \rho$

→ The induced shifts in M_W can become as large as 0.14 GeV for no-mixing, $M_{\rm SUSY} = 2$ TeV, $\lambda = 0.6$.

 $\rightarrow \delta M_W \lesssim$ 0.05 GeV in the less favorable scenario, but still sizeable.

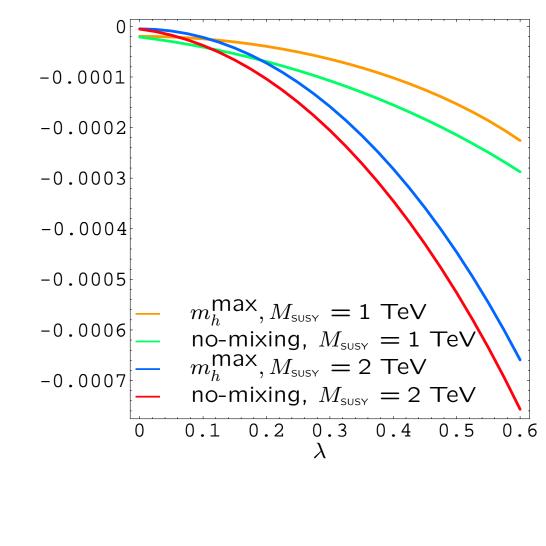
$$\delta M_W^{\text{exp,today}} = 34 \text{ MeV}$$

 $\delta M_W^{\text{exp,future}} = 7 \text{ MeV}$

⇒ extreme parameter regions already ruled out

$\delta \sin^2 \theta_{\text{eff}}$ as a function of λ :

 $\delta \sin^2 \theta_{\rm eff}$



follows the behavior of $\Delta \rho$

→ The shifts $\delta \sin^2 \theta_{\text{eff}}$ can reach values up 7 × 10⁻⁴ for no-mixing scenario, $M_{\text{SUSY}} = 2$ TeV, $\lambda = 0.6$,

 \rightarrow smaller, but still sizeable, for the other scenarios.

 $\delta \sin^2 \theta_{\text{eff}}^{\text{exp,today}} = 17 \times 10^{-5}$ $\delta \sin^2 \theta_{\text{eff}}^{\text{exp,future}} = 1.3 \times 10^{-5}$

⇒ extreme parameter
 regions already ruled out
 ⇒ highly sensitive test in the future

- Contrary to the SM: M_{h^0} is not a free parameter
- Large radiative corrections:

Dominant one-loop corrections: $\sim G_{\mu}m_t^4 \ln\left(\frac{m_{\tilde{t}_1}m_{\tilde{t}_2}}{m_t^2}\right)$

The MSSM Higgs sector is connected to all other sector via loop corrections (especially to the scalar top sector)

- Measurement of M_{h^0} , Higgs couplings \Rightarrow test of the theory
- LHC: $\Delta M_{h^0} \approx 0.2$ GeV LC: $\Delta M_{h^0} \approx 0.05$ GeV

 $\Rightarrow M_{h^0}$ will be electroweak precision observable

S. Peñaranda, LCWS05, Stanford, 21.03.2005

MSSM with MFV

Dominant one-loop contributions are described by loop diagrams involving third-generation quarks and squarks.

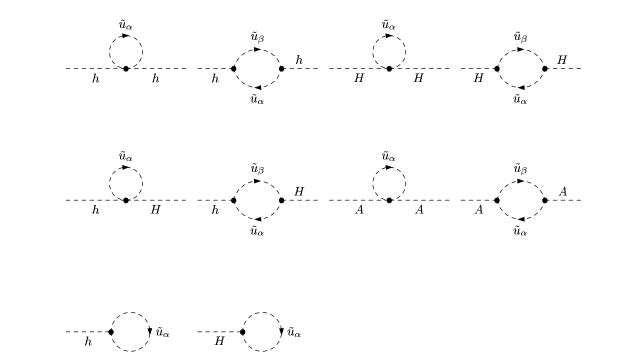
MSSM with NMFV

The squark loops have to be modified by introducing the generation-mixed squarks.

Feynman diagrams for M_{h^0} :

 \Rightarrow For not too large tan β : only \tilde{t}/\tilde{c} sector relevant

 \Rightarrow Evaluation of Σ_h , Σ_H , Σ_{hH} , Σ_A , T_h , T_H (contributions from t/\tilde{t} and c/\tilde{c} only)



Higgs boson sector analysis performed in 5 benchmark scenarios: *M. Carena et. al, hep-ph/0202167*

- $M_{h^0}^{\max}$: $X_t = 2M_{SUSY}$, with $X_t = A_t - \mu \cot \beta$ to maximize the lightest Higgs boson mass

- constrained $M_{h^0}^{\max}$: with $X_t/M_{SUSY} = -2$ for $b \to s\gamma$

– no-mixing : with no mixing in the MFV \tilde{t} sector

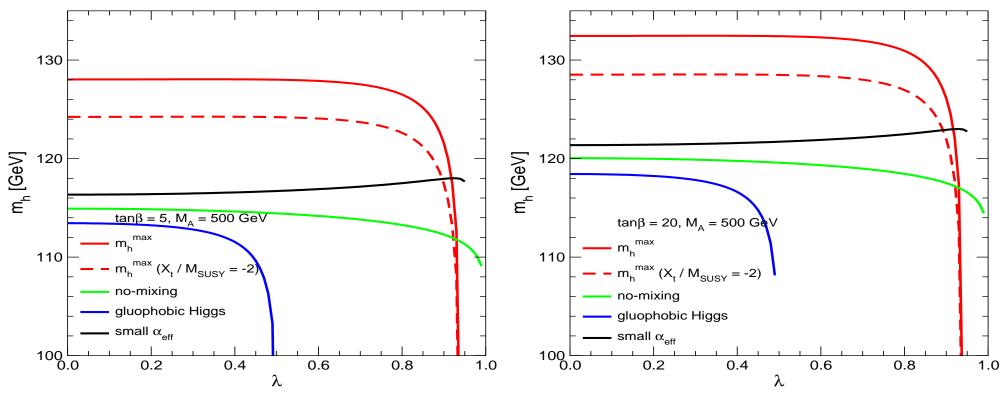
- gluophobic Higgs : with reduced ggh coupling
- small $\alpha_{\rm eff}$: with reduced $h\bar{b}b$ and $h\tau^+\tau^-$ coupling

For all these benchmark scenarios the soft SUSY-breaking parameters in the three generations of scalar quarks are equal,

$$M_{\text{SUSY}} = M_{\tilde{Q}_q} = M_{\tilde{U}_q} = M_{\tilde{D}_q}$$
 and $A_s = A_b = A_c = A_t$

 \Rightarrow Results implemented in *FeynHiggs*2.1 (www.feynhiggs.de) M_{h^0} , mixing angle α and $\Delta \rho$ included

M_{h^0} as a function of λ :



All scenarios show a similar behavior

⇒ small effects for small/moderate λ ⇒ $\delta M_{h^0} = \mathcal{O} (5 \text{ GeV})$ only for very large λ (around 0.5 in the gluophobic Higgs scenario, and around 0.9 in the other four scenarios) ⇒ mostly decreasing M_{h^0} , but also increase possible (in small α_{eff} -scenario it can be enhanced by up to 2 GeV)

4. Conclusions

• Precision observables can

constrain MSSM parameter space already today, and even more for the increasing precision at future colliders

• MSSM with NMFV:

general 4 × 4 mixing in \tilde{t}/\tilde{c} and \tilde{b}/\tilde{s} sectors \Rightarrow Evaluation of M_W , $\sin^2 \theta_{\text{eff}}$, M_{h^0}

- Analytical results: for arbitrary mixing Numerical results: only for *LL* mixing, parametrized with λ ($(\delta_{LL})_{23}$)
- Large effects possible for M_W , $\sin^2 \theta_{\text{eff}}$:

 $\lambda \lesssim 0.2 \Rightarrow \delta M_W \lesssim 20 \text{ MeV}$ $\lambda \lesssim 0.2 \Rightarrow \delta \sin^2 \theta_{\text{eff}} \lesssim 10^{-4}$

 \rightarrow We have shown that the effects of scalar quark generation mixing enters essentially through $\Delta\rho$

- Moderate effects possible for M_{h^0} only for large λ
- FeynArts, FormCalc, LoopTools include: NMFV MSSM : 6 × 6 generalized squarks mixing matrices

S. Peñaranda, LCWS05, Stanford, 21.03.2005