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• Strategy

• Relating future ILC and LHC results to SUSY models

• Comments on two-loop calculations for SUSY

• Tactics

• Differential equations method for multi-loop integrals

• TSIL (Two-loop Self-energy Integral Library), a computer

program for evaluating general two-loop self-energy and

vacuum integrals

• Results

• Two-loop self-energies for scalars in a general renormalizable

gauge theory (massless vector approximation)

• Pole masses of squarks at two-loop order



Masses are key observables in SUSY

Most of what we do not already know about Supersymmetric extensions of the

Standard Model involves the soft breaking terms with positive mass dimension.

Predictions of specific models (Minimal Supergravity, Gauge Mediation, Anomaly

Mediation, Extra-dimensional Mediation, ...) allow/require precise calculations.
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The apparent unification of gauge

couplings in the MSSM invites us to

extrapolate the soft masses up to high

scales, to see if they obey some

organizing principle.



A case study (Snowmass 2001 P3 working group):

See also Allanach, Blair, Kraml, Martyn, Polesello, Porod, Zerwas, hep-ph/0403133, and

earlier references therein, for similar work.
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m1/2=240,  m0=120, A0=−120, tanβ=10, µ>0


LH squarks, LH sleptons, RH sleptons

Assumptions:

2% uncertainty in Mgluino

1% uncertainty in Msquarks

0.5% uncertainty in Msleptons

1% uncertainty in αs

0% theoretical uncertainty (!)

Goal: make the last, unreasonable, assumption as close to re asonable as

possible.



TeV-scale SUSY will provide an interesting laboratory for quantum field theory:

• Fundamental scalar particles

• No new dimensionless couplings in Lagrangian

• QCD coupling is perturbative at the TeV scale, but still strong enough to

require multi-loop calculations

• Corrections to Higgs masses at 1 loop go like y2
t , at 2 loops go like y2

t g2
3 .

• Corrections to gluino mass involve Cg2
3 with C = 3, rather than

C = 4/3 for quarks. So, the QCD coupling for the gluino is effectively

9/4 larger.

• Corrections to squark, quark masses get large effects from the

strongly-coupled, heavy gluino.

Two-loop corrections to observables will be mandatory if SU SY is correct



Another key feature of the problem: many distinct particles.

• 2-loop diagrams involve many different mass scales simulta neously.

For example:
t̃i

t̃j

t

t

h0
g̃ t̃i t̃j

t

b

C̃k

g̃

Large, diverse hierarchies of ratios of squared masses.

• Method should be generic, reuseable from start to finish.

Do calculations for scalars, fermions, vectors in a general field theory. Then

apply to Higgs, squarks, sleptons, and quarks, gluino, charginos, neutralinos,

etc., or, ???



To calculate physical masses

Evaluate self-energy = sum of 1-particle irreducible Feynman diagrams:

Π(s) = Π(1)(s) + Π(2)(s) + . . .

where s = the external momentum invariant.

The complex pole mass

spole = M2
− iΓM

is the solution for complex s of:

spole = m2
tree + Π(spole)

= m2
tree + Π(1)(m2

tree)
[
1 + Π(1)′(m2

tree)
]

+ Π(2)(m2
tree) + . . .

The pole mass is gauge invariant at each order in perturbation theory, can be

related to kinematic masses as measured at colliders.

There are a finite number of 2-loop, two-point Feynman diagrams. Why not just do

them once, for a general theory, and get it over with?



Method:

• Reduce all self-energies in general theory to a few basis integrals

• Basis integrals contain DR (or MS) counter- terms, so finite.

• Numerically evaluate basis integrals quickly and reliably for arbitrary masses.

Tarasov’s basis and recurrence relations:

S T U M (“Master integral”)

Can always reduce 2-loop self-energies to a linear combination of these, with

coefficients rational functions of:

s = p2 = external momentum invariant

x, y, z, . . . = internal propagator masses



To evaluate basis integrals:

Values at s = 0 are known analytically, in terms of logs, polylogs.

∂

∂s
(basis integral) = (another self-energy integral)

= (linear combination of basis integrals)

So, we have a set of coupled, first-order, linear differential equations.

Consider the Master integral M(x, y, z, u, v):
x y

z u
v

and the basis integrals obtained from it by removing propagators:

U(x, z, u, v), U(y, u, z, v), U(z, x, y, v), U(u, y, x, v),

S(x, u, v), T (x, u, v), T (u, x, v), T (v, x, u),

S(y, z, v), T (y, z, v), T (z, y, v), T (v, y, z)

Call these 13 integrals In, (n = 1, . . . , 13).



Differential equations method for basis integrals

d

ds
In =

∑

m

KnmIm + Cn

Here Knm are rational functions of s and x, y, z . . ., and Cn are one-loop

integrals. These are obtained by using Tarasov’s recursion relations.

Solve for basis integrals In using

Runge-Kutta integration in the

complex s-plane, starting from

known values at s = 0. Re[s]

Im[s]

thresholds

Method implemented for S, T, U type integrals by Caffo, Czyz, Laporta, Remiddi.

Dave Robertson and I have extended the method to also work for M :



TSIL= Two-Loop Self-energy Integral Library

D.G. Robertson, SPM, hep-ph/0501132

(based in part on SPM, hep-ph/0307101)

Program written in C, callable from C++, Fortran

Advantages of the method:

• Basis integrals computed for any values of all masses

and s.

• All integrals from a given master integral obtained

simultaneously in a single numerical computation.

• Checks on the numerical accuracy follow from

changing choice of contour.

• Computation times generically ≪ 1 second on

modern hardware.

In the Hopi culture native to

the American southwest, Tsil is

the Chili Pepper Kachina. The

Kachina are supernatural spirits,

represented by masked figurines

and impersonated by ceremonial

dancers. They communicate

between the tribe and their gods,

who live in the San Francisco

mountains and are never seen

directly.



TSIL usage example: Corrections to Higgs pole mass in SUSY

g̃

t̃m

t̃n

t

t

h0
t

t

t
g̃

t̃m

h0

t̃m

t̃n t̃k
t

g̃

h0

All of the necessary one-loop and two-loop basis integrals for these diagram

topologies can be computed in one fell swoop with:

for (i=0; i<2; i++) {

for (j=0; j<i; j++) {

TSIL SetParameters (&(result[i][j]),mstop2[i],mt2,mstop2[j],mt2,mgluino2,qq);

TSIL Evaluate (&(result[i][j]),s);

}

}

. . .

value1 = TSIL GetFunction(&(result[0][0]), "M");

value2 = TSIL GetFunction(&(result[1][0]), "Vzxyv");

etc.



Applications to 2-loop scalar self-energies:

• General renormalizable theory, at leading order in gauge couplings

[hep-ph/0312092]

• Corrections to h0, H0, A0, H± pole masses in the MSSM, including all

terms involving SUSYQCD couplings (e.g. αSy2
t and αSg2) , and those

that do not vanish as the electroweak gauge couplings are turned off

(e.g. y4
t and y2

t y2
b and a2

t y
2
t ). [hep-ph/0405022]

• General renormalizable theory with unbroken gauge symmetries

[hep-ph/0502168]

• 2-loop SUSYQCD corrections to squark pole masses (this talk)

• 2-loop corrections to sfermion pole masses, neglecting only 2-loop effects

suppressed by (mZ/mSUSY)4



The Feynman diagrams

Each diagram is reduced to a linear

combination of basis integrals,

computed analytically in terms

of polylogarithms when possible,

otherwise computed numerically

using TSIL.

Used DR and MS schemes,

general covariant gauge. Vector

masses neglected in the 2-loop

diagrams with more than one

vector propagator.

Various checks made on the

calculation . . .

+ fermion mass insertions + ghosts

+ counterterms



Checks on the calculation of scalar pole masses:

• Independent of gauge-fixing parameter

Individual diagrams depend on ξ; cancels in pole mass

(ξ = 0, 1, 3 in Landau, Feynman, Fried-Yennie gauges)

• Pole mass is renormalization group invariant

Checked analytically at 2-loop order; numerical check below

• Absence of divergent logs on shell

Individual diagrams have log(1 − p2/m2), divergent as p2
→ m2;

must and do cancel in pole mass

• Independent of unphysical epsilon-scalar masses in SUSY-preserving

DR
′

scheme of I. Jack et al (1993).



SUSYQCD corrections to squark masses in MSSM

Obtained by specializing the general result. Not all diagrams contribute, many

terms combine because of (softly broken) supersymmetry.

Example: In the special case of degenerate running masses, mQ̃ = mg̃ = Q,

the result for the pole mass simplifies:

M2
Q̃

= m2
Q̃

[
1 +

αs

4π

(
32

3

)
+

(
αs

4π

)2 {
112

3
+

664π2

27
+

32π2ln2

9
−

16ζ(3)

3

}]

= m2
Q̃

[
1 + 0.849 αs + 1.89 α2

s

]

There are no large logs here (only one mass scale!), so this illustrates the intrinsic

size of typical SUSYQCD 1-loop (∼ 4%) and 2-loop (∼ 1%) corrections to the

squark masses.

Could reasonably guess 3-loop corrections to be of order 0.3% ?



Renormalization scale ( Q) dependence of calculated squark pole mass
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Squark mixing, quark masses, and

electroweak effects neglected; all

squarks taken degenerate with each

other and gluino at tree level.

Dashed lines are ±2% variation of αs.

Remaining scale dependence (from 3 loops and beyond) is small.

However, 2-loop correction is much larger than 1-loop scale dependence.



Dependence of squark mass correction on the gluino mass
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Two loop A large part of the squark mass

correction is due to the gluino mass.

In realistic models, effects due to

variation in squark masses, top and

bottom Yukawa effects, electroweak

effects are significant, too.

For Mgluino >
∼

2Msquark, get large negative radiative corrections to squark

masses. Resummation of large logarithms may then be necessary.

(This does not usually happen for squarks of the first two families in realistic

SUSY-breaking models.)



A non-realistic special case: the supersymmetric limit

Consider Nf flavors of quarks and antiquarks, each degenerate with their squark

superpartners, with running DR masses mi. Then the pole masses are:

M2
i = m2

i

[
1 +

g2
3

16π2
CqΠ̃

(1)
i +

g4
3

(16π2)2
CqΠ̃

(2)
i

]

where, with Cq=4/3, CG=3, Iq=1/2 for SU(3)c:

Π̃
(1)
i = 8 − 4ln(m2

i )

Π̃
(2)
i = Cq

[
20ζ(2) − 16π2 ln 2 + 24ζ(3) − 28 − 8ln(m2

i ) + 8ln2(m2
i )

]

+CG

[
66 − 24ζ(2) + 8π2 ln 2 − 12ζ(3) − 36ln(m2

i ) + 6ln2(m2
i )

]

+Iq

Nf∑

j=1

h(m2
j/m2

i ),

with ln(x) ≡ ln(x/Q2), and h(x) given in terms of dilogarithms.

This will provide a strong check on a future 2-loop fermion pole mass calculation.



Status for sfermion pole masses

The 2-loop SUSYQCD (α2
s) corrections to squark masses (including

non-degeneracy and mixing effects) are given explicitly in hep-ph/0502168.

All other 2-loop sfermion pole masses now given “implicitly” in

hep-ph/0312092, hep-ph/0502168. This means that the results are

known for a general theory in terms of Lagrangian running couplings and masses.

To evaluate in practice, one must do the tedious, but purely algebraic, exercise of

specializing to the MSSM case. (A symbolic manipulation program like

Mathematica or FORM can be taught to do this.)

Vector boson masses are included only in the 1-loop diagrams and the 2-loop

diagrams with only one vector line. Therefore:

(fractional error in 2-loop contribution to pole mass2) ∼ N

(
MZ

MSUSY

)2

where N is a dimensionless expansion coefficient. (Experience shows that N is

typically less than 1.)



Outlook

• Two-loop calculations for self-energies in the MSSM are necessary, possible

• I favor a Strategy based on:

– DR
′

scheme (complementary to on-shell scheme results)

– Reusable, generic calculations

– Efficient computations of basis two-loop integrals

• 2-loop SUSYQCD corrections to squarks now known, typically <
∼

1%

• 2-loop sfermion pole masses are implicitly known

• Some 3-loop calculations (e.g. for h0, maybe for gluino, squarks) will

eventually be necessary to compete with measurement accuracy from a

Linear Collider

• Progress continues!


