Probing Electroweak Top Quark Couplings at Hadron and Lepton Colliders

> UB, A. Juste, L. Orr, D. Rainwater hep-ph/0412021, and in prep.

- 1. Introduction
- 2. $t\bar{t}\gamma$ Production
- 3. $t\bar{t}Z$ Production
- 4. LHC-ILC Comparison
- 5. Conclusions

Ulrich Baur State University of New York at Buffalo

1 – Introduction

- Although we have discovered the top quark almost 10 years ago, we know little about its couplings to photons and Z bosons
- The most general ttV ($V = \gamma, Z$) vertex function (for on-shell V) can be written in terms of 8 form factors

for on-shell top quarks 4 form factors remain:

$$\Gamma_{\mu}^{ttV}(s, q, \bar{q}) = -ie \left\{ \gamma_{\mu} \left(F_{1V}^{V}(s) + \gamma_{5} F_{1A}^{V}(s) \right) + \frac{\sigma_{\mu\nu}}{2m_{t}} \left(q + \bar{q} \right)^{\nu} \left(iF_{2V}^{V}(s) + \gamma_{5} F_{2A}^{V}(s) \right) \right\}$$

 m_t : top quark mass; $q(\bar{q})$: $t(\bar{t})$ four momenta $\sigma_{\mu\nu} = (i/2)[\gamma_{\mu}, \gamma_{\nu}]$ physics interpretation of form factors:

- → $F_{1V}^V(F_{1A}^V)$ are the vector (axial vector) form factors
- → F_{2V}^{γ} is related to the anomalous magnetic moment: $F_{2V}^{\gamma}(0) = Q_t (g-2)/2, Q_t = 2/3$
- → F_{2A}^V violates CP and is related to electric (weak) dipole moment: $d_t^V = (e/2m_t)F_{2A}^V(0)$
- concentrate on these 4 form factors here
- assuming a dipole form factor, S-matrix unitarity restricts the low energy form factors to

 $\left|F_{iV,A}^{V}(0)\right| \leq \left(c_{i}^{V}/\Lambda\right)^{i+1}$

where $\Lambda =$ scale of new physics, and

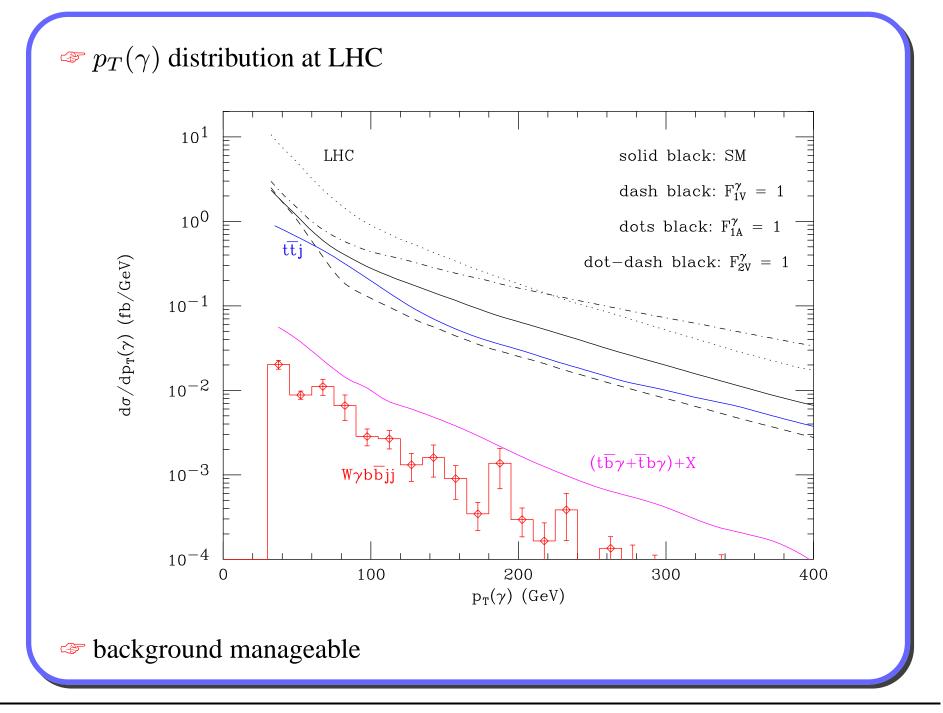
 $c_1^{\gamma} = 6.8 \text{ TeV}, \quad c_1^Z = 5.1 \text{ TeV}, \quad c_2^{\gamma} = 3.4 \text{ TeV}, \quad c_2^Z = 2.8 \text{ TeV}$

• $b \to s\gamma$ weakly constrains $F_{2V,A}^{\gamma}$: $-0.2 < F_{2V}^{\gamma} < 0.5, |F_{2A}^{\gamma}| < 4.5$

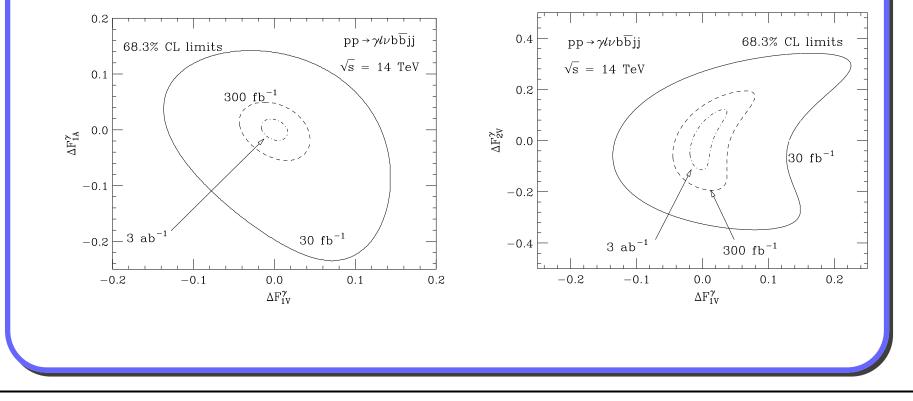
• LEP data indirectly constrain $F_{1V,A}^Z$ but not $F_{1V,A}^\gamma$ (Larios et al.). LEP data also constrain a linear combination of F_{2V}^Z and F_{2V}^γ (Eboli et al.).

Disadvantages:

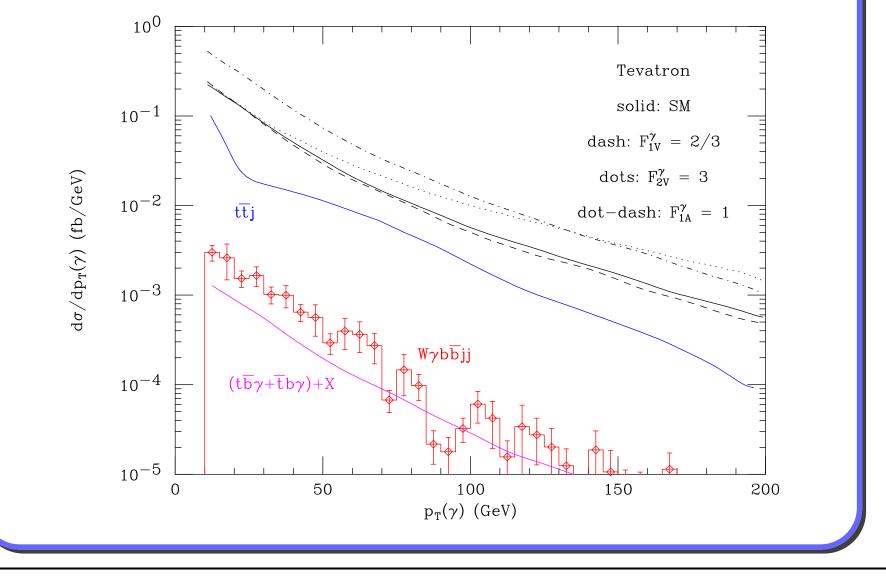
- constraints are (mildly) cutoff dependent
- constraints assume no other new physics is present
- A linear e⁺e⁻ collider promises to determine F^V_{iV,A} with a precision of a few percent in e⁺e⁻ → tt̄ for √s = 500 GeV and 200 fb⁻¹ (Snowmass 2001) disadvantage: difficult to disentangle ttγ and ttZ couplings deficiency: only one coupling at a time is varied in existing studies: how do correlations between couplings affect the limits?


- is it possible to determine the $t\bar{t}V$ couplings at the Tevatron and/or the LHC?
 - \Leftrightarrow consider $t\bar{t}\gamma$ and $t\bar{t}Z$ production
 - \Leftrightarrow can separate $tt\gamma$ and ttZ couplings
 - $rac{F_{1V,A}^{V}}{F_{2V,A}^{V}}$ are dimension 4 (5) couplings
 - $\rightarrow p_T$ distribution of photon/Z is harder for $F_{2V,A}^V$
 - \rightarrow and may help to discriminate F_1 and F_2 type couplings

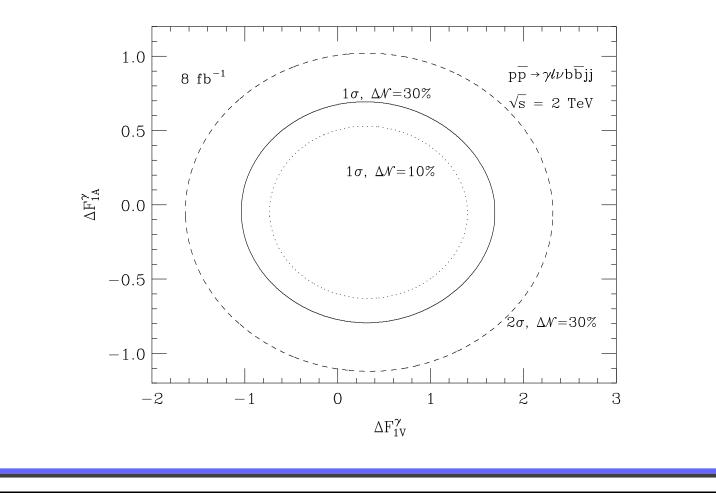
2 – $t\bar{t}\gamma$ **Production**


- concentrate on $\ell^{\pm}\nu jjb\bar{b}\gamma$ final state and require 2 tagged b's
- signal:
 - \Leftrightarrow include photon radiation off b's, W's and W decay products
 - $rac{}{\sim}$ require $\Delta R(b, \gamma) > 1$ to suppress radiation off *b*'s
 - ✓ require $m(jj\gamma) > 90$ GeV and $(e\gamma) \not p_T$ cluster transverse mass $m_T(e\gamma; \not p_T) > 90$ GeV to suppress radiation off W decay products
 - \Leftrightarrow impose invariant mass and m_T cuts on bjj, $bjj\gamma$, $\ell\nu b\gamma$ and $\ell\nu b$ requiring them to be consistent with coming from top decay
 - \sim photon transverse momenta of interest are < 500 GeV
 - → form factor effects can be neglected if $\Lambda \ge 1$ TeV is assumed
 - rightarrow gg fusion ($q\bar{q}$ annihilation) dominates at LHC (Tevatron)

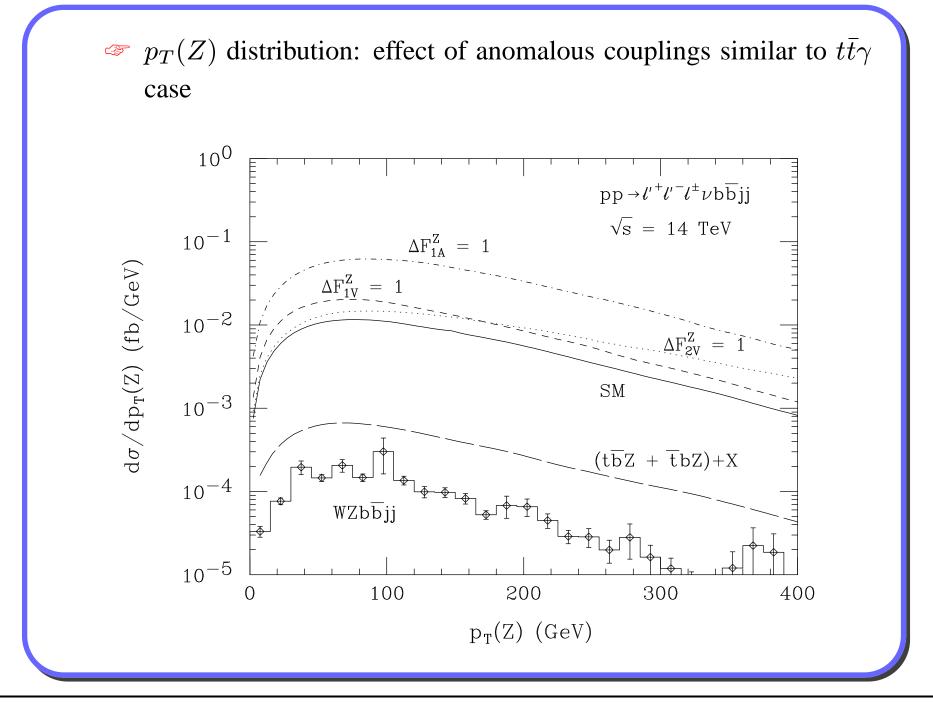
• backgrounds:

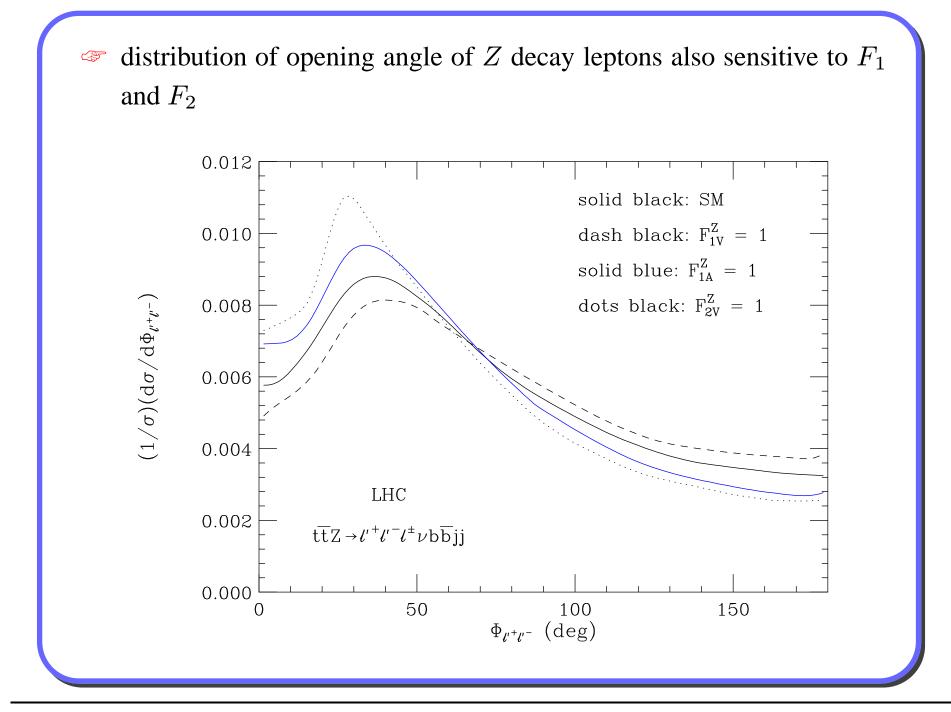

- $\Leftrightarrow W^{\pm}\gamma b\bar{b}jj$ production (non-resonant diagrams contributing to final state)
- $rac{d}{r} t\bar{b}\gamma jj, t\bar{b}\gamma jj, t\bar{b}\gamma \ell^- \bar{\nu}$ and $\bar{t}b\gamma \ell^+ \nu$ production (single resonant diagrams contributing to final state)
- *tt̄j* production, where one jet fakes a photon
 → largest background if jet misidentification probabilities of CDF,
 DØ, ATLAS or CMS are used

- determine sensitivity limits from χ^2 fit to $p_T(\gamma)$ distribution, assuming a 30% normalization uncertainty of the SM cross section
 - \sim can constrain $tt\gamma$ vector and axial vector couplings to O(10%) with 30 fb⁻¹, and to a few % with 300 fb⁻¹
 - rightarrow can constrain F_2^{γ} type couplings to O(30%) with 30 fb⁻¹, and to O(15%) with 300 fb⁻¹

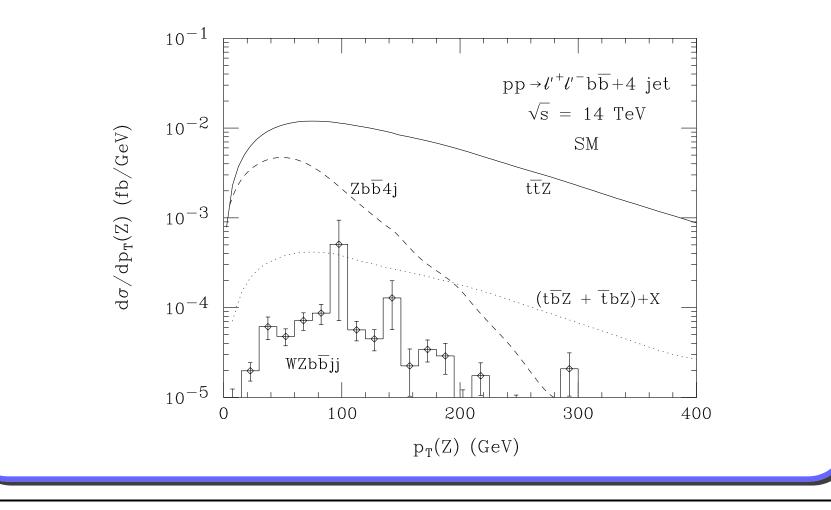

• Tevatron: reduced sensitivity due to "bgd." from initial state radiation $(q\bar{q} \text{ annihilation dominates})$

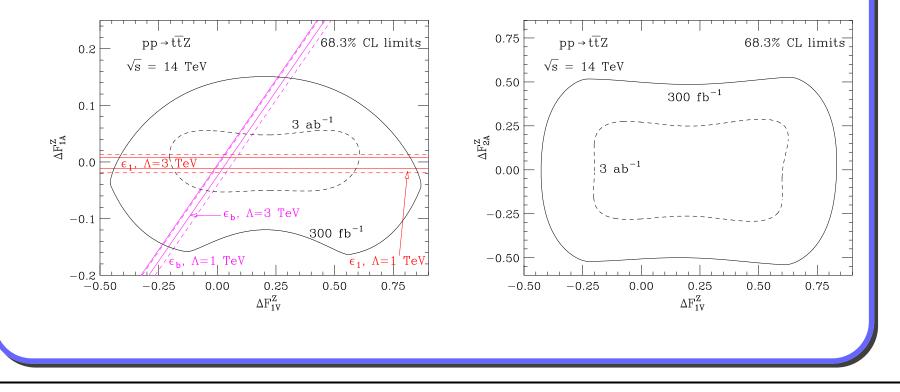
• As a result:


 \Leftrightarrow no sensitivity to F_2 type couplings


✓ for ≥ 8 fb⁻¹ can perform a first rough test of $tt\gamma$ vector and axial vector couplings

3 – $t\bar{t}Z$ **Production**

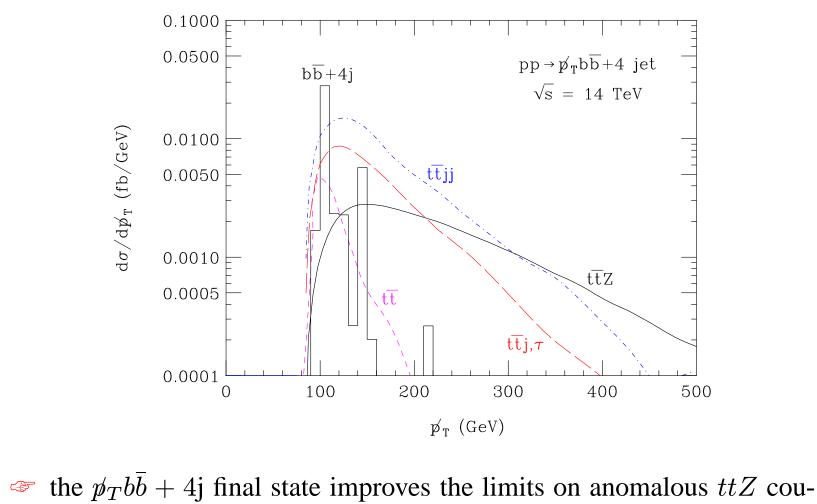

- first consider events with leptonic Z decays $rightarrow t\bar{t}Z$ production not observable at Tevatron
- consider semi-leptonic and all-hadronic $t\bar{t}$ decays
- again, require 2 *b*-tags
- signal: include Z emission from top decay products
- (almost) no phase space for t → WZb decays: impose invariant mass and m_T cuts such that l'⁺l'⁻ pair is consistent with Z, and lνb and jjb are consistent with top
- $\ell'^+ \ell'^- \ell^\pm \nu b \bar{b} j j$ final state:
 - *∞* backgrounds: $W^{\pm}Zb\bar{b}jj$, $t\bar{b}Zjj$, $\bar{t}bZjj$, $t\bar{b}Z\ell^{-}\bar{\nu}$ and $\bar{t}bZ\ell^{+}\nu$ production


all-hadronic top decays: additional background from $Zb\bar{b}4j$ production (calculated using Alpgen)

 \Leftrightarrow manageable if bjj (jj) systems are required to be consistent with top (W)

- obtain sensitivity limits from p_T(Z) and Φ_{ℓ'+ℓ'} distributions, assuming 30% normalization uncertainty of SM cross section and two tagged b's
 - rightarrow can test $F_{1V,A}^Z$ at the 15 85% (6 60%) level for 300 fb⁻¹ (3000 fb⁻¹, SuperLHC)

rightarrow can test $F_{2V,A}^Z$ at the 50% (30%) level for 300 fb⁻¹ (3000 fb⁻¹)



$t\bar{t}Z \to p_T b\bar{b} + 4\mathbf{j}$

- now consider $pp \to t\bar{t}Z$ with $Z \to \bar{\nu}\nu$ and $t\bar{t} \to b\bar{b} + 4j$
- advantage: the cross section is about a factor 5 larger than for $\ell'^+ \ell'^- \ell^\pm \nu b \bar{b} j j$ final state
- require ≥ 3 jets with $p_T(j) > 50$ GeV, $p_T > 5$ GeV^{1/2} $\sqrt{\sum E_T}$ and 2 b tags
- main backgrounds:

 $pp \rightarrow t\bar{t}$ and $b\bar{b} + 4j$ production with badly mismeasured jets $pp \rightarrow t\bar{t}jj$ with $t\bar{t} \rightarrow \ell\nu b\bar{b} + 2j$ where charged lepton is lost $pp \rightarrow t\bar{t}j$ with $t\bar{t} \rightarrow \tau\nu b\bar{b} + 2j$ and $\tau \rightarrow$ hadrons

plings by 20 - 40%

4 – LHC - ILC Comparison

• $e^+e^- \rightarrow t\bar{t}$ studies (Snowmass resource book) use a different parameterization of the $t\bar{t}V$ vertex:

$$\Gamma^{ttV}_{\mu}(s, q, \bar{q}) = ie \left\{ \gamma_{\mu} \left(\widetilde{F}^{V}_{1V}(s) + \gamma_{5} \widetilde{F}^{V}_{1A}(s) \right) \right. \\ \left. + \frac{(q - \bar{q})_{\mu}}{2m_{t}} \left(\widetilde{F}^{V}_{2V}(s) + \gamma_{5} \widetilde{F}^{V}_{2A}(s) \right) \right\}$$

• $\widetilde{F}_{iV,A}^V$ and $F_{iV,A}^V$ are related by

$$\begin{split} \widetilde{F}_{1V}^{V} &= -\left(F_{1V}^{V} + F_{2V}^{V}\right) , \quad \widetilde{F}_{1A}^{V} &= -F_{1A}^{V} , \\ \widetilde{F}_{2V}^{V} &= F_{2V}^{V} , \qquad \widetilde{F}_{2A}^{V} &= -iF_{2A}^{V} \end{split}$$

ILC parameters used in Snowmass study: √s = 500 GeV, linear polarization P(e⁻) = P(e⁺) = 0.8,
 only one coupling is varied at a time

coupling	LHC, 300 fb^{-1}	e^+e^-
$\Delta \widetilde{F}_{1V}^{\gamma}$	$+0.043 \\ -0.041$	$^{+0.047}_{-0.047}$, 200 fb $^{-1}$
$\Delta \widetilde{F}_{1A}^{\gamma}$	$+0.051 \\ -0.048$	$^{+0.011}_{-0.011}$, 100 fb $^{-1}$
$\Delta \widetilde{F}_{2V}^{\gamma}$	$+0.038 \\ -0.035$	$^{+0.038}_{-0.038}$, 200 fb $^{-1}$
$\Delta \widetilde{F}_{2A}^{\gamma}$	$\begin{array}{c} +0.16 \\ -0.17 \end{array}$	$^{+0.014}_{-0.014}$, 100 fb $^{-1}$
$\Delta \widetilde{F}^Z_{1V}$	$\begin{array}{c} +0.34 \\ -0.72 \end{array}$	$^{+0.012}_{-0.012}$, 200 fb $^{-1}$
$\Delta \widetilde{F}^Z_{1A}$	$+0.079 \\ -0.091$	$^{+0.013}_{-0.013}$, 100 fb $^{-1}$
$\Delta \widetilde{F}^Z_{2V}$	$\begin{array}{c} +0.26 \\ -0.34 \end{array}$	$^{+0.009}_{-0.009}$, 200 fb $^{-1}$
$\Delta \widetilde{F}^Z_{2A}$	$^{+0.35}_{-0.35}$	$^{+0.052}_{-0.052}$, 100 fb ^{-1}

- The ILC is able to achieve better limits for the ttZ couplings
- The LHC is competitive for some $tt\gamma$ couplings
- it appears likely that the LHC will accumulate 300 fb⁻¹ before the ILC achieves 100 − 200 fb⁻¹
 it is worthwhile measuring the *ttV* couplings at the LHC
- LHC and Tevatron limits can potentially be improved by including single *b*-tagged final states (at the cost of an increased background)
- biggest drawback of current ILC study of ttV couplings: no correlations between different ttV couplings are taken into account
 It is worthwhile launching a new study of e⁺e⁻ → tt̄

5 – Conclusions

- the Tevatron may be able to perform a very rough first test of the $tt\gamma$ vector and axial vector couplings, if $\geq 8 \text{ fb}^{-1}$ can be achieved
- the LHC will be able to perform the first precision measurement of the $tt\gamma$ couplings (3 10%)
- the determination of the ttZ couplings at the LHC is limited to the 10 80% level.
- The ILC will be able to measure both $tt\gamma$ and ttZ couplings at the few percent level.