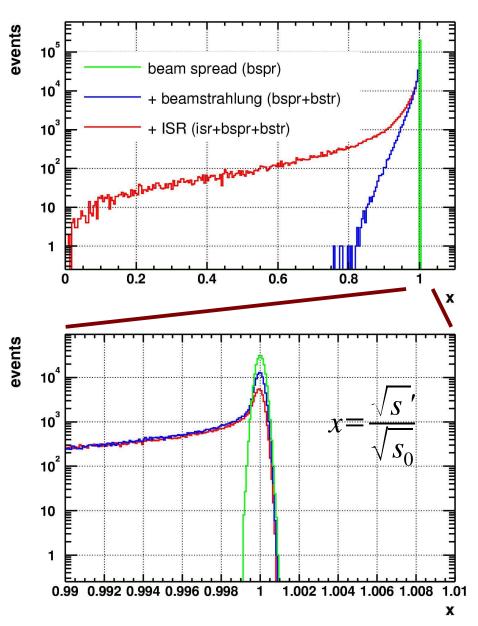
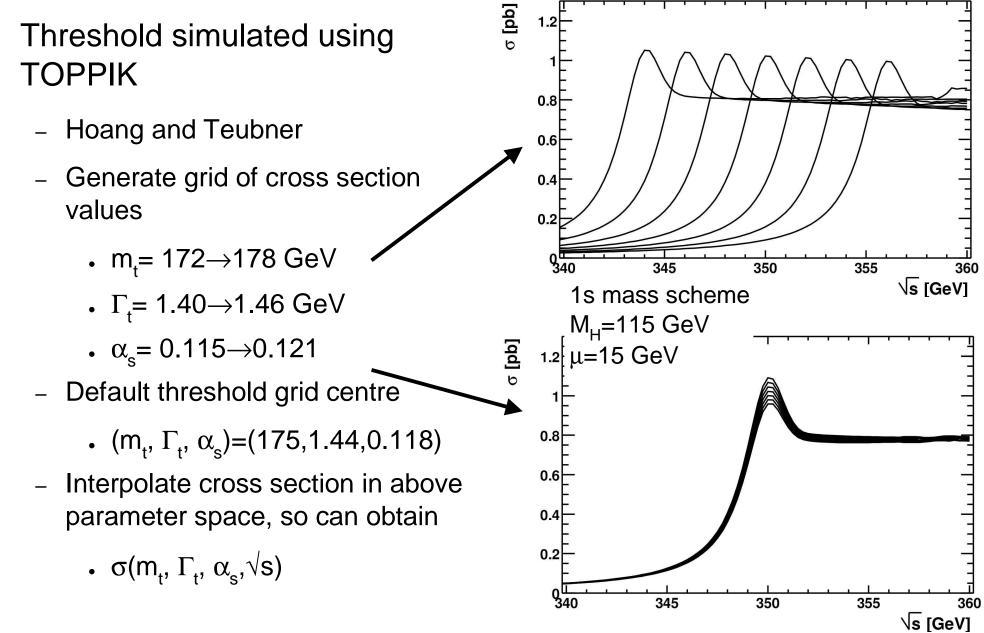
Luminosity spectrum impact on the top¹ mass

Stewart T. Boogert, University College London. QCD and top session, LCWS 2005, Stanford, 21st March 2005.


Next 15 mins

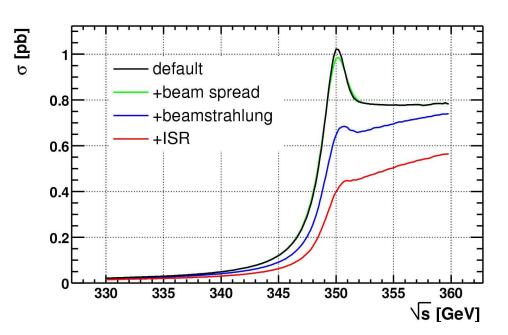
- Talk outline
 - Take simplest luminosity spectrum and evaluate what causes significant shifts of the top mass
 - Introduction
 - Luminosity spectrum
 - . Top threshold
 - Simulations/fitting
 - Energy spread
 - Beamstrahlung and ISR
 - Beamstrahlung parameters(CIRCE)
- Ongoing analysis/previous presentations
 - Uses Guinea-Pig beam-beam interaction MC and attempts to extract the systematic shift due to the mis-reconstruction of luminosity spectrum
 - Does not include linac/beam spread


Luminosity spectrum Three basic components

- - ISR (Calculable to high precision)
 - Beamstrahlung (CIRCE)
 - Simplest parametrisation available $f(x) = a_0 \delta (1-x) + a_1 x^{a_2} (1-x)^{a_3}$
 - a₁ normalisation condition
 - a₀=0.5461, a₂=20.297, a₃=-0.62747
 - Energy spread (Gaussian or parametrisation to NLC shape)
 - Single parameter ($\Box \sim 0.1\%$)
 - Beamstrahlung and energy spread determined from accelerator and/or physics event measurements (Bhabhas)

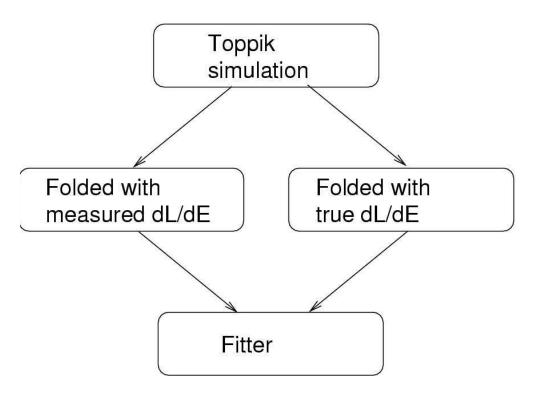
Top threshold simulation

Smearing the threshold

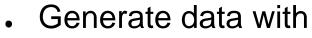

- Two alternative methods are used to smear the threshold curve
 - Histogram (binned)

 $\sigma(\sqrt{s}) = \int_0^1 f(x) \sigma(x\sqrt{s}) dx$

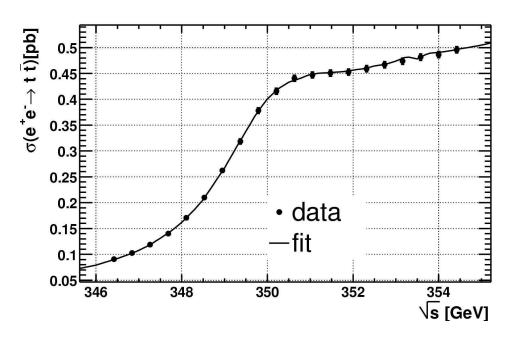
- Large number of bins required when including all effects
 - ISR : 0<x<1
 - Beamstrahlung : 0.75<x<1</p>
 - Energy spread : 0.99<x<1.01</p>
- Event sample (unbinned)


$$\sigma(\sqrt{s}) = 1/N \sum_{samples}^{N} \sigma(x_i \sqrt{s})$$

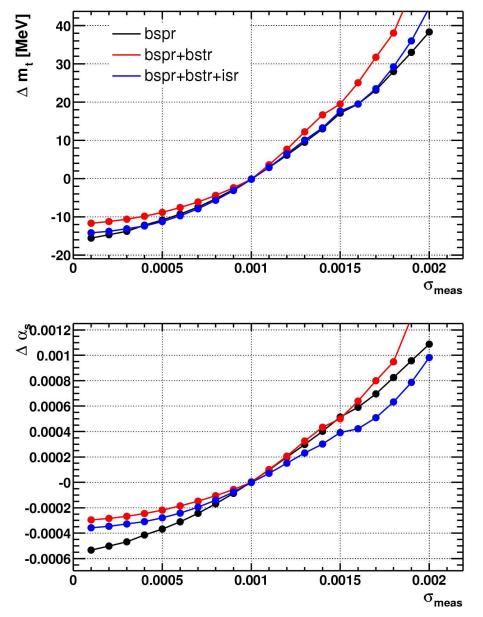
 Large number of samples (N) of x distributed in a luminosity spectrum

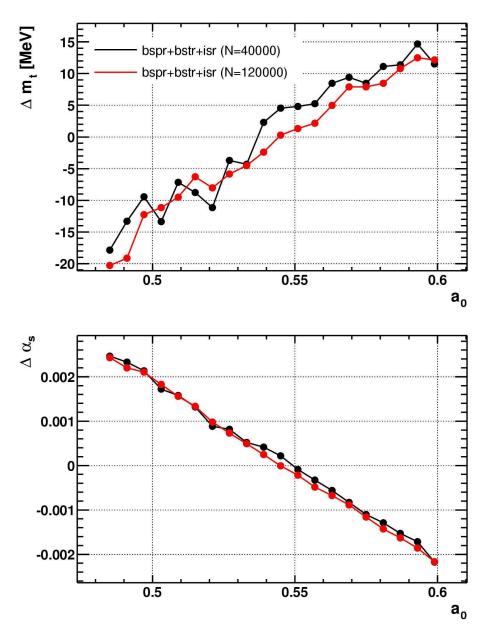


Fitting introduction



Fitting the top threshold

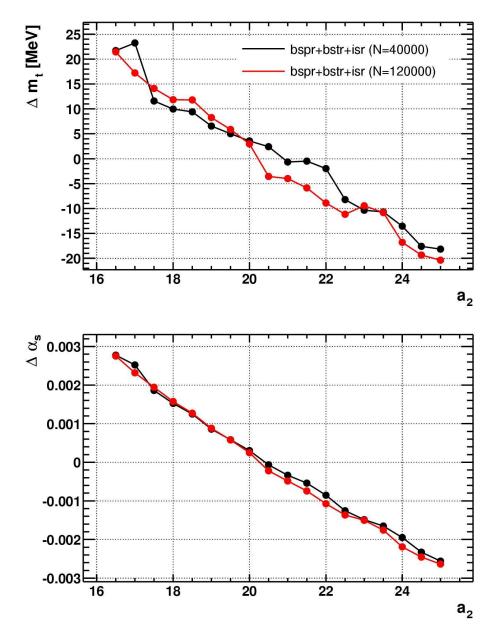

- 20 equidistant scan points
- Range 346→354 GeV
- High luminosity, 30nb per point
- Nominal luminosity spectrum
 - Linac energy spread 0.1%
 - CIRCE parameters on slide 3
- Fit cross section
 - Smeared with different luminosity spectra, so different CIRCE and beam spread parameters
 - Form usual χ² between "data" and "theory" cross section
 - $~\Gamma_{_{t}} \text{fixed, extract}~m_{_{t}} \text{ and } \alpha_{_{s}}$


Effect of beam spread (with Beamstrahlung and ISR)

- Again look at the effect of linac energy spread
 - It has been proposed the effect of energy spread on previous slide is reduced due to beamstrahlung and ISR
 - Take the Gaussian and σ =0.1% width case
 - Now including
 - Beamstrahlung
 - Beamstrahlung and ISR
 - Generated with unbinned method
- Effect of beam spread
- unchanged

Effect of CIRCE parameters (a_0)

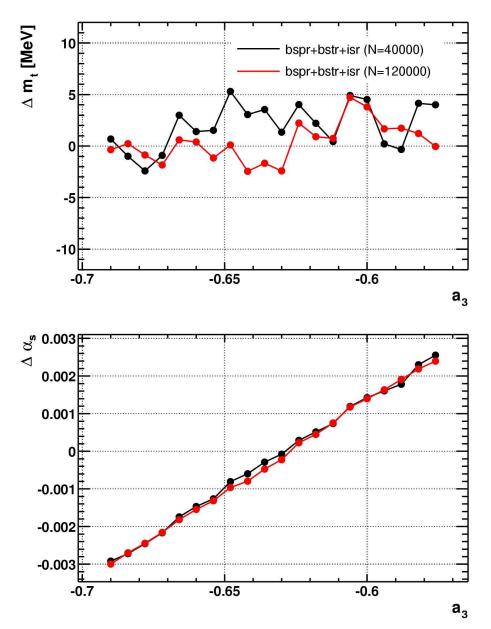
- Determines the fraction of particles at full beam energy
 - No beamstrahlung
 - Events at full beam energy $\sim a_0^2$
 - Dependence on a₀
 - Simple and linear
 - m_t: larger a₀ ⇒ less radiation losses ⇒ fit cross section biased to higher energies
 - α_s : larger $a_0 \Rightarrow$ smaller loss of full beam energy luminosity \Rightarrow overall increase in fit cross section



Effect of CIRCE parameters (a_2)

• Power law term

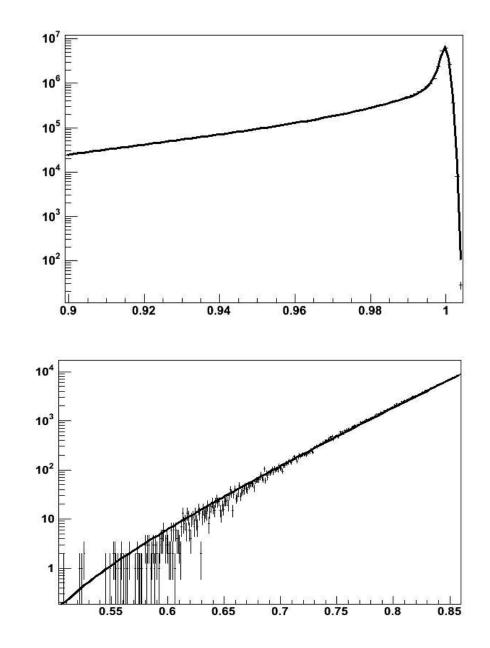
 x^{a_2}


- a₂ dependence
 - Again linear
 - m_t: larger a₂ ⇒ less radiation losses ⇒ fit cross section biased to higher energies
 - α_s : larger $a_2 \Rightarrow$ smaller loss of full beam energy luminosity \Rightarrow overall increase in fit cross section

Effect of CIRCE parameters (a_3)

- . Divergent term in Beta function
 - $(1-x)^{a_3}$
 - a₃ dependence
 - m_t : little dependence
 - α_s : same argument as before but just enters β -function as negative power
- Satistics
 - N=40,000 or 120,000 lumi spectrum events
 - Trends consistent

Words of caution


- Luminosity spectrum parametrisation
 - Might be wrong, CIRCE β -function is only one choice
 - Not flexible enough
 - Must include effects of
 - correlation between colliding beams
 - Long time average of many accelerator effects
 - Ground motion
 - Accelerator configuration/performance
 - Subject of on going work on the luminosity spectrum

- Scan range not yet optimised
 - Essentially random choice for analysis presented here,
 - . 20 scan points
 - \sqrt{s} : 346 \rightarrow 354 GeV
 - Simple study can check this
 - Number of scan points
 - Start and end
 - Luminosity per point
- Only looked at systematic error on top mass
 - what about statistical error dependence, assumed it is small
 - Might depend on scan parameters

Luminosity spectrum development

- Luminosity spectrum parametrisation
 - Currently developing parameterisation from Glen White's ILC simulation
 - Including linac wakefields, feed back system, ground motion etc.
 - Lumi spectrum parametrisation can be used for luminosity spectrum extraction
 - Fit Bhabha events for parameters of luminosity spectrum
 - Hoped to present new analysis here (top and Bhabha) but still not ready, Parametrisation looks look but not applied to top threshold.
 - Example fit of one "bunch train", 550 bunches, 500 GeV

Summary and outlook

- Detour from previous presentations
 - Investigated the effect of linac energy spread
 - Larger energy spread has larger effect
 - "Set it small or measure it well"
 - Effect still present with beamstrahlung and ISR
 - Study of beamstrahlung shape effect on top mass reconstruction
 - Threshold top mass seems most sensitive to parameters a_0 and a_2 .
 - Future work
 - Perform fit with luminosity spectrum parameters extracted from Bhabha events generated with realistic accelerator and bunch-bunch interaction codes. Use the true luminosity spectrum to smear top threshold and create data
 - Provides "independent" cross check of previous analysis, where only Bhabha events were used for the luminosity spectrum
 - Merge two analyses, extract luminosity spectrum parametrisation from Bhabha events and apply to top threshold

