Corrections to precision Higgs Physics from a warped extra dimension

Ben Lillie

H. Davoudiasl, J. Hewett, BL, T. Rizzo	hep-ph/0312193
H. Davoudiasl, J. Hewett, BL, T. Rizzo	hep-ph/0403300
J. Hewett, BL, T. Rizzo	hep-ph/0407059
BL	In progress

Outline

- Introduction and motivation
- Formalism
- Precision Electroweak constraints
- Higgs physics
- Other collider signatures
- Conclusion

Motivation

Randall-Sundrum Model

One extra dimension with a warped background: $ds^2 = \left(\frac{R}{z}\right)^2 (dx^2 - dz^2), R = 1/k,$ k is the AdS curvature.

Two branes, one at R, the other at $R' = \frac{M_{Pl}}{TeV}R$. Masses get scaled by $M \to \frac{R}{R'}M$.

Solves the Hierarchy Problem!

 $\Rightarrow \log(R'/R) \approx 35.$

(Will often use $\epsilon = \frac{R}{R'} \sim 10^{-16}$.)

Randall, Sundrum hep-ph/9905221

Where do the SM fields go?

On TeV brane \Rightarrow large 4-fermi opperators: $\frac{\lambda}{\Lambda_{\text{TeV}}^2}\psi\bar{\psi}\psi\bar{\psi}$.

Solution to Hierarchy problem \Rightarrow need to leave Higgs on TeV brane.

Also phenomenological problems with Higgs in bulk

Davoudiasl, Hewett, Rizzo hep-ph/0006041

Can move fermions to Planck brane \Rightarrow 4-fermi operators supressed by M_{Pl} .

But EWSB on TeV brane \Rightarrow fermions in bulk \Rightarrow gauges in bulk.

Gauge bosons in the bulk can lead to gauge coupling unification

Agashe, Delgado, Sundrumhep-ph/0212028Agashe, Servanthep-ph/0411254

Need a way to enforce $SU(2)_{\text{custodial}}$

With just the SM gauge group, there are large corrections to $\rho = \frac{M_W^2}{M_Z^2 \cos^2 \theta}$.

Expand gauge group: $SU(2)_L \times SU(2)_R \times U(1)_{B-L}$.

Break $SU(2)_R \times U(1)_{B-L} \to U(1)_Y$ on Planck brane, $SU(2)_L \times SU(2)_R \to SU(2)_D$ on TeV brane \Rightarrow only $U(1)_Q$ completely unbroken.

Note $SU(2)_{\text{Custodial}} = SU(2)_D$

 \rightarrow only broken on Planck brane.

Put right-handed fermions into $SU(2)_R$ multiplets.

$$Q_R = \begin{pmatrix} u_R \\ d_R \end{pmatrix}.$$

Define
$$\kappa = \frac{g_{5R}}{g_{5L}}$$
, $\lambda = \frac{g_{5B}}{g_{5L}}$.

Agashe, Delgado, May, Sundrum hep-ph/0308036

KK Expansions

We can write gauge fields as $A(x,z) = \sum_n \zeta_A^{(n)}(z) A^{(n)}(x)$ with

$$\zeta_A^{(n)}(z) = z(a_A^{(n)} \mathbf{J}_1(x_A^{(n)} \epsilon z/R) + b_A^{(n)} \mathbf{Y}_1(x_A^{(n)} \epsilon z/R))$$

5D fermions are a-chiral, write as $\Psi = \begin{pmatrix} \chi_{\Psi} \\ \zeta \end{pmatrix}$.

$$\left(\begin{array}{c} \xi \Psi \right) \\ (1 - 1) \left(\frac{3}{2} \right) \left(\frac{n}{2} \right) \left(\frac{n}{2} \right) \\ (1 - 1) \left(\frac{n}{2} \right) \left(\frac{n}{2} \right) \left(\frac{n}{2} \right) \\ (1 - 1) \left(\frac{n}{2} \right) \left(\frac{n}{2} \right) \left(\frac{n}{2} \right) \\ (1 - 1) \left(\frac{n}{2} \right) \left(\frac{n}{2} \right) \left(\frac{n}{2} \right) \left(\frac{n}{2} \right) \\ (1 - 1) \left(\frac{n}{2} \right) \left(\frac{n}{2} \right) \left(\frac{n}{2} \right) \left(\frac{n}{2} \right) \\ (1 - 1) \left(\frac{n}{2} \right) \left(\frac{n}{2} \right) \left(\frac{n}{2} \right) \left(\frac{n}{2} \right) \\ (1 - 1) \left(\frac{n}{2} \right) \left$$

Expansion is $\chi(x,z) = \sum_n z^{(3/2)} \psi_{\chi}^{(n)}(z) \chi_{\Psi}^{(n)}(x)$, etc.

$$\psi_{\chi}^{(n)}(z) = z(a_{\chi}^{(n)} \mathbf{J}_{c_{\Psi}+1/2}(x_{\Psi}^{(n)} \epsilon z/R) + b_{A}^{(n)} \mathbf{J}_{-c_{\chi}-1/2}(x_{\Psi}^{(n)} \epsilon z/R))$$

$$\psi_{\xi}^{(n)}(z) = z(a_{\xi}^{(n)} \mathbf{J}_{c_{\Psi}+1/2}(x_{\Psi}^{(n)} \epsilon z/R) + b_{A}^{(n)} \mathbf{J}_{-c_{\xi}-1/2}(x_{\Psi}^{(n)} \epsilon z/R))$$

Gauge Boundary Conditions:

At z = R

$$\partial_z \zeta_{A_L} = 0$$

$$\zeta_{A_R^{\pm}} = 0$$

$$\partial_z ((\kappa/\lambda)\zeta_B + \zeta_{A_R^3}) = 0$$

$$\zeta_B - (\kappa/\lambda)\zeta_{A_R^3} = 0$$

And at
$$z = R'$$

$$\partial_z (\kappa \zeta_{A_L} + \zeta_{A_R}) = 0$$

$$\partial_z (\zeta_{A_L} - \kappa \zeta_{A_R}) = -\frac{g_{5L}^2 v^2 \epsilon}{4} (\zeta_{A_L} - \kappa \zeta_{A_R})$$

$$\partial_z \zeta_B = 0$$

Fermion Boundary Conditions. Boundary conditions will mix two fields, Ψ_L , $\Psi_R.$ At z=R

$$\xi_L = 0$$

$$\chi_R = m^{(n)} R \alpha \xi_R$$

And at z = R'

$$\xi_L = -M_D R' \xi_R$$
$$\chi_R = M_D R' \chi_L$$

 $M_D = \lambda_f v$. Note $\lambda_t = \lambda_b$ by $SU(2)_D$.

 α is related to mixing with planck brane localized fermions. Needed for top-bottom splitting.

Csaki, Grojean, Hubisz, Shirman, Terning hep-ph/0310355

 $m_W/k\epsilon$

Ben Lillie, 03/2005

Z'Masses

Electroweak Constraints

• Require *rough* agreement with tree-level SM relations. In our scheme:

$$1 - \sin^2 heta_{
m os} \equiv rac{m_W^2}{m_Z^2}$$
. $\lambda (= g_{5B}/g_{5L})$ fixed by M_Z

We can also define:

 $\sin^2 heta_{eg} \equiv rac{e^2}{g_{\mu ar
u W_1}^2}$ Could be any light fermion

From the coupling of the neutral KKs to fermions, as measured on the Z-pole:

$$\sqrt{\rho_{\text{eff},\text{f}}^Z} \, \frac{g_{f\bar{f}W_1}}{c_W^{\text{os}}} \left(T_{3\text{L}} + \sin^2\theta_{R,f}T_R^3 - \sin^2\theta_{\text{eff},\text{f}}Q\right)$$

- In the SM at *tree-level*, all these must be equal.
- Note

$$\rho_{\text{eff,f}}^{Z} = g_{Z_1 f \bar{f}}^2 / g_{W_1 f \bar{f}}^2.$$

We can match this onto the 5D covariant derivative:

$$\int_{R}^{R'} \frac{dz}{z} g_{5L} \left(T^{aL} A^{aL} + \kappa T^{aR} A^{aR} + \lambda \frac{B - L}{2} B \right)$$

For neutral bosons \rightarrow

$$\underbrace{g_{5L}(I^{3L} - \lambda I^B)}_{g_{f\bar{f}Z}(n)} \left(T^{3L} + \underbrace{\kappa \frac{(\kappa I^{3R} - \lambda I^B)}{(I^{3L} - \lambda I^B)}}_{\sin^2 \theta_{R,f}} T^{3R} + \underbrace{\frac{\lambda I^B}{(I^{3L} - \lambda I^B)}}_{-\sin^2 \theta_{\text{eff},f}} Q \right) Z$$

Where
$$I^i = \int_R^{R'} dz/z \, \zeta_i \psi_f \psi_{ar{f}}.$$

 $\sin^2 \theta_{R,f} = 0$ for planck brane fermions.

Similarly for charged bosons.

Cacciapaglia, Csaki, Grojean, Terning hep-ph/0409126

Left handed currents

Right handed currents

Why we expect strange Higgs physics

- Wavefunctions distorted
 - \Rightarrow masses for gauge bosons
 - $\Rightarrow g_{hWW}$ is supressed.
- No supression of $\lambda_{hf_1\bar{f}_1}$.
- Enhancement of KK fermion couplings $\lambda_{hf_n\bar{f}_n} \sim \sqrt{\log(R'/R)}\lambda_{hf_1\bar{f}_1}.$
- $\mathcal{O}(1)$ Yukawas

 \Rightarrow Large couplings for KK-states of *all* fermion species.

So we expect supression of $h \to WW, ZZ$ enhancement of $h \to gg, \gamma\gamma$.

Fermion spectrum and couplings

Impose explicit Z_2 left-right symmetry, so $c_L = -c_R$.

Large Dirac mass \Rightarrow **light** first KK state

Agashe, Servant hep-ph/0403143

KK state coupling to TeV localized field $\Rightarrow \sqrt{\log(R'/R)} \text{ enhancement.}$

use fundamental Yukawa couplings $\lambda_{t,b} = 1.5$.

$$\lambda_{\text{others}} = \lambda_{light}.$$

Generic Collider Signatures

What does this model look like at colliders?

- First one or two electroweak gauge boson KK modes visible at the LHC
- First two or three gluon KK modes highly visible at LHC
- Light new fermions, should be visible
- Graviton KK resonances at best difficult to see
- Strong $W_L W_L$ scattering?

Conclusions

- Regions of parameter space are consistent with all precision electroweak and collider constraints
- Signals are easily visible at the LHC and possibly ILC
- Higgs production has large enhancement at LHC, $\gamma\gamma$ colliders, reduction at ILC
- Higgs decays are substantially modified