Determining superparticle masses

based on: B. K. Gjelsten, D. J. Miller, P. Osland JHEP 12 (2004) 003 [hep-ph/0410303], hep-ph/0501033

LCWS 05

Per Osland, CERN / University of Bergen

Outline

- Introduction
- Graphic overview of parameter space
- Kinematical endpoints (squark chain)
- Fitting MC data: precision
- LC input (LSP mass): resolving ambiguities
- gluino chain (b-tagging)
- LC input: higher precision

Supersymmetry may be realized at the LHC/ILC

- LHC: initial-state energy undetermined LSP not seen
 - ILC: lower energy reach precise energy, LSP mass determined
- LHC: determine mass *differences* up to high values
- ILC: can determine LSP mass with high precision
- ILC: resolve ambiguities in LHC mass measurements

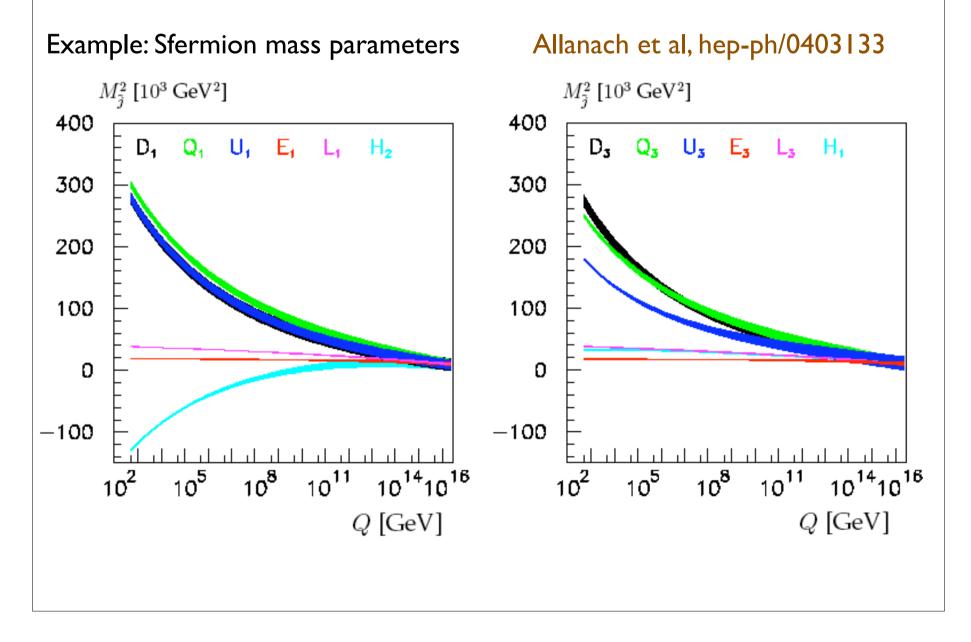
At the LHC, unstable particles produced copiously, cascade decays, e.g.

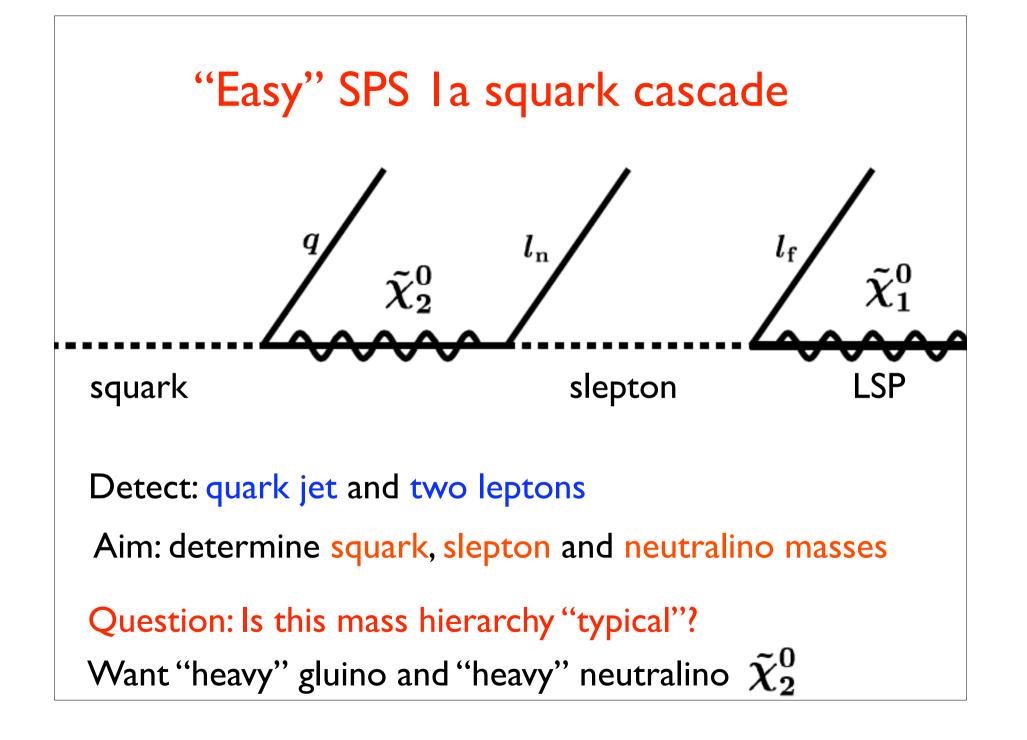
$$\tilde{q} \rightarrow \tilde{\chi}_2^0 q \rightarrow \tilde{l} l q \rightarrow \tilde{\chi}_1^0 l l q$$

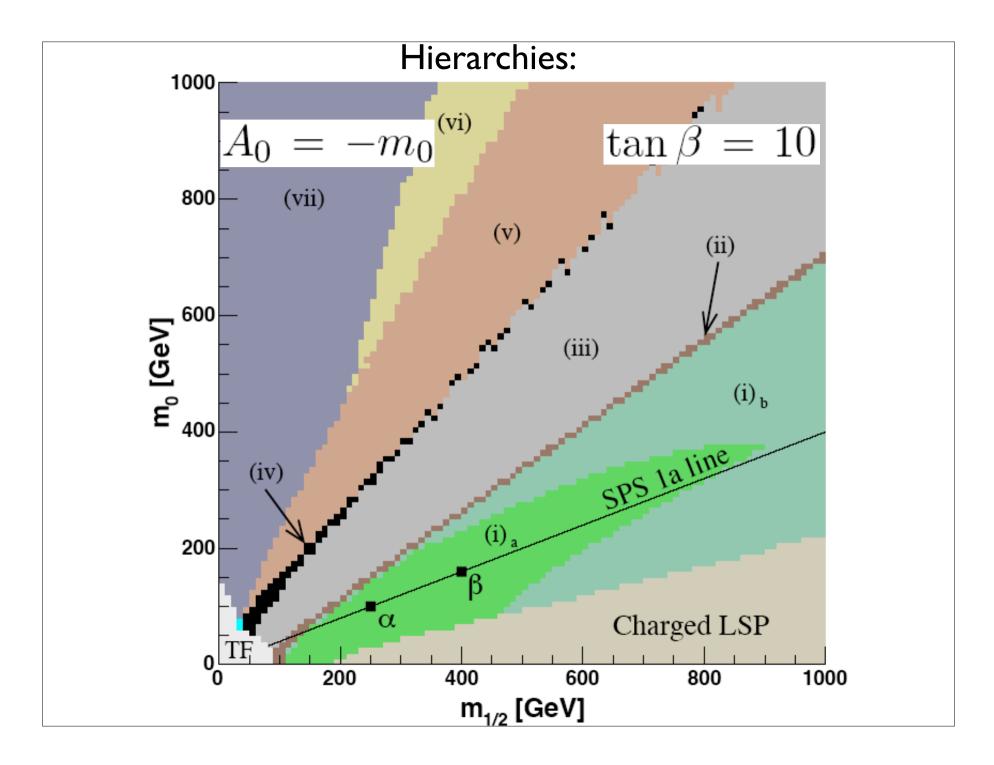
Challenge: determine masses with high precision

Refs: Baer et al, hep-ph/9512383; Hinchliffe et al, hep-ph/9610544; Bachacou et al, hep-ph/9907518; Polesello, ATLAS Int Note 1997; Allanach et al, hep-ph/0007009; Gjelsten et al, ATLAS Note 2004; Chiorboli, Tricomi, CMS Note 2004

mSUGRA (CMSSM)

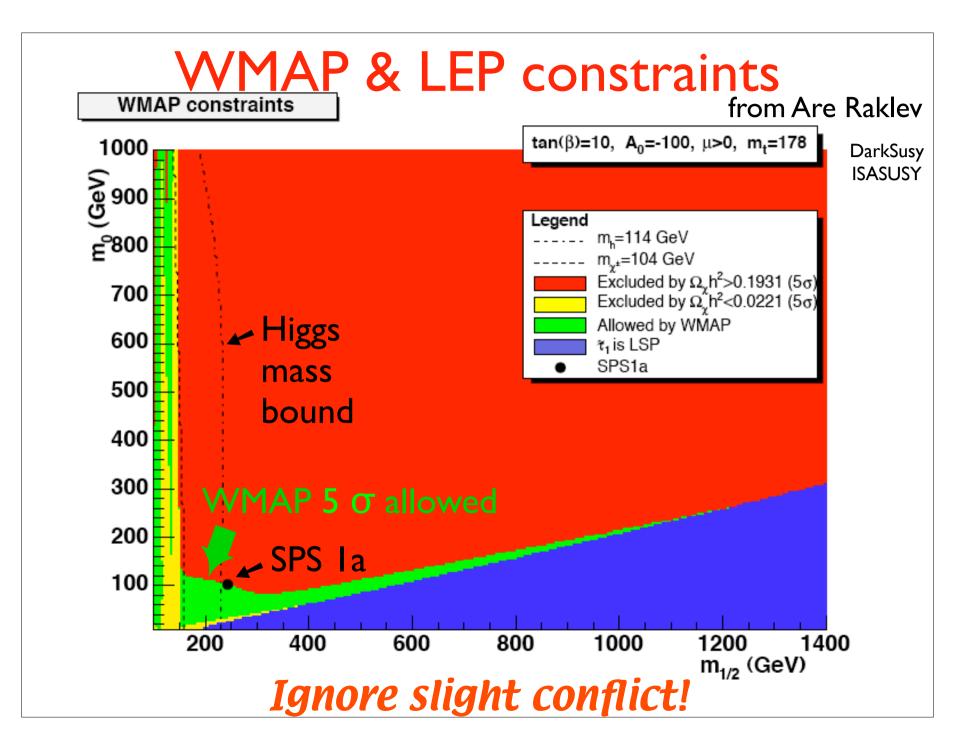

- Unification at high energies, fewer parameters $m_0 \quad m_{1/2} \quad A_0 \quad \tan \beta \quad \operatorname{sign} \mu$
- Snowmass Points and Slopes: Allanach et al, hep-ph/0202233: SPS Ia, SPS Ib, SPS 3, SPS 5.
- WMAP constraints: Bennett et al, astro-ph/0302207; Spergel et al, astro-ph/0302209


footnote: Benchmark Points


- LHC Points ('SUGRA'): Hinchliffe et al, hep-ph/9610544: Point 1, Point 2, Point 3, Point 4, Point 5
- Post-LEP Benchmarks ('CMSSM'): Battaglia et al, hepph/0106204: A, B, C, ..., M
- Snowmass Points and Slopes ('mSUGRA'): Allanach et al, hep-ph/0202233: SPS Ia, SPS Ib, SPS 2, SPS 3, SPS 4, SPS 5, SPS 6, .., SPS 9
- Post-WMAP Benchmarks ('CMSSM'): Ellis et al, hep-ph/0303043, Battaglia et al hep-ph/0306219: A', B', C', ..., M'

Mutations: Point $5 \rightarrow B \rightarrow SPS | a \rightarrow B'$

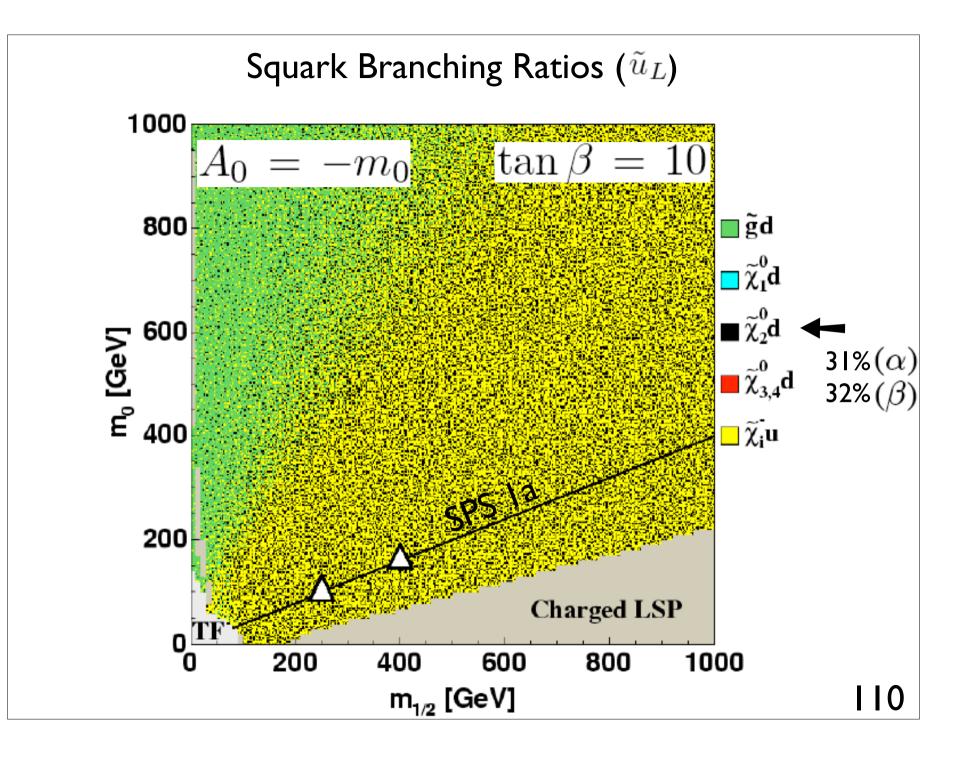
Precision in masses allows extrapolation to Unification scale

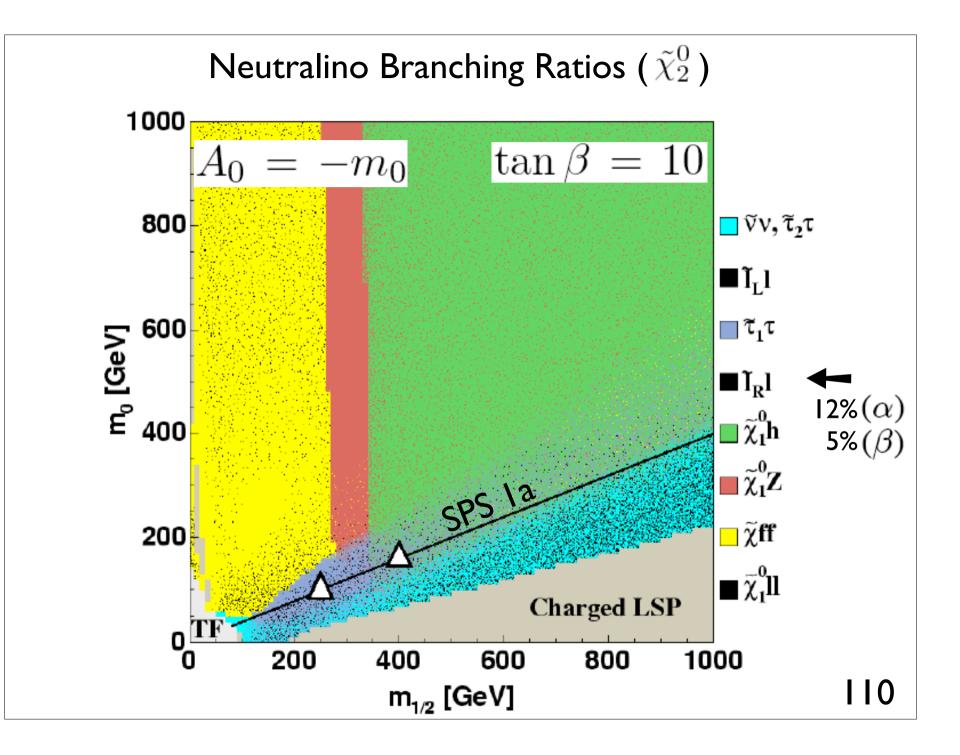


heavy gluino

heavy neutralino

(i)
$$\tilde{g} > \max(\tilde{d}_L, \tilde{u}_L, \tilde{b}_1, \tilde{t}_1)$$
 and $\tilde{\chi}_2^0 > \max(\tilde{l}_R, \tilde{\tau}_1)$
(ii) $\tilde{g} > \max(\tilde{d}_L, \tilde{u}_L, \tilde{b}_1, \tilde{t}_1)$ and $\tilde{l}_R > \tilde{\chi}_2^0 > \tilde{\tau}_1$
(iii) $\tilde{g} > \max(\tilde{d}_L, \tilde{u}_L, \tilde{b}_1, \tilde{t}_1)$ and $\min(\tilde{l}_R, \tilde{\tau}_1) > \tilde{\chi}_2^0$
(iv) $\tilde{d}_L > \tilde{g} > \max(\tilde{u}_L, \tilde{b}_1)$ and $\min(\tilde{l}_R, \tilde{\tau}_1) > \tilde{\chi}_2^0$
(v) $\min(\tilde{d}_L, \tilde{u}_L) > \tilde{g} > \tilde{b}_1$ and $\min(\tilde{l}_R, \tilde{\tau}_1) > \tilde{\chi}_2^0$
(vi) $\min(\tilde{d}_L, \tilde{u}_L, \tilde{b}_1) > \tilde{g} > \tilde{t}_1$ and $\min(\tilde{l}_R, \tilde{\tau}_1) > \tilde{\chi}_2^0$
(vii) $\min(\tilde{d}_L, \tilde{u}_L, \tilde{b}_1, \tilde{t}_1) > \tilde{g}$ and $\min(\tilde{l}_R, \tilde{\tau}_1) > \tilde{\chi}_2^0$
(vii) $\min(\tilde{d}_L, \tilde{u}_L, \tilde{b}_1, \tilde{t}_1) > \tilde{g}$ and $\min(\tilde{l}_R, \tilde{\tau}_1) > \tilde{\chi}_2^0$


Next question:


Given "correct" hierarchy,

 $m_{ ilde{g}} > m_{ ilde{q}_L} > m_{ ilde{\chi}^0_2} > m_{ ilde{l}_R} > m_{ ilde{\chi}^0_1}$

is there enough BR?

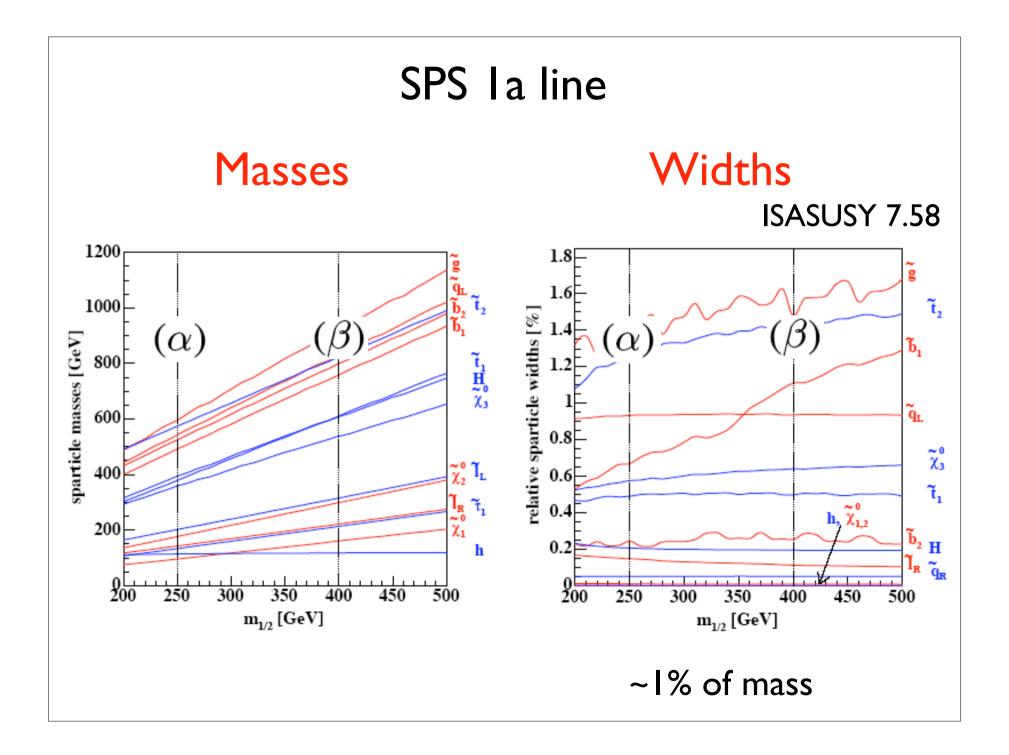
- Does the squark have significant BR to neutralino and quark?
- Does the neutralino have significant BR to slepton and lepton?

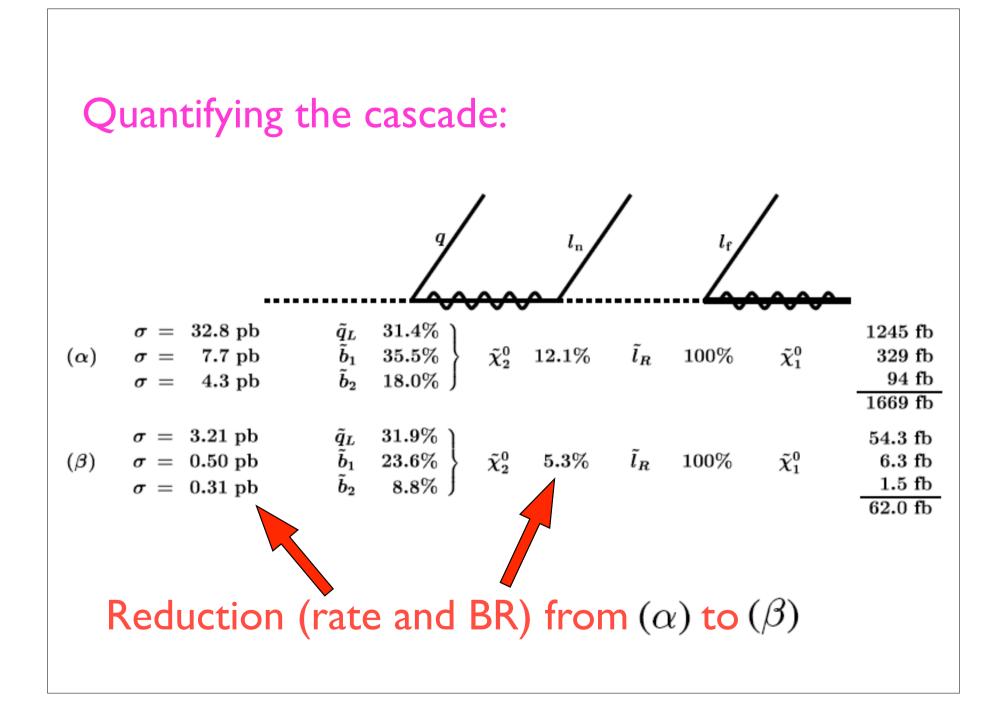
SPS Ia (line)
$$m_0 = -A_0 = 0.4 m_{1/2}$$

 $\tan \beta = 10, \quad \mu > 0$

Two particular points on the line:

 $(\alpha): m_0 = 100 \text{ GeV}, \quad m_{1/2} = 250 \text{ GeV}$


$$(\beta): m_0 = 160 \text{ GeV}, \qquad m_{1/2} = 400 \text{ GeV}$$


Spectrum

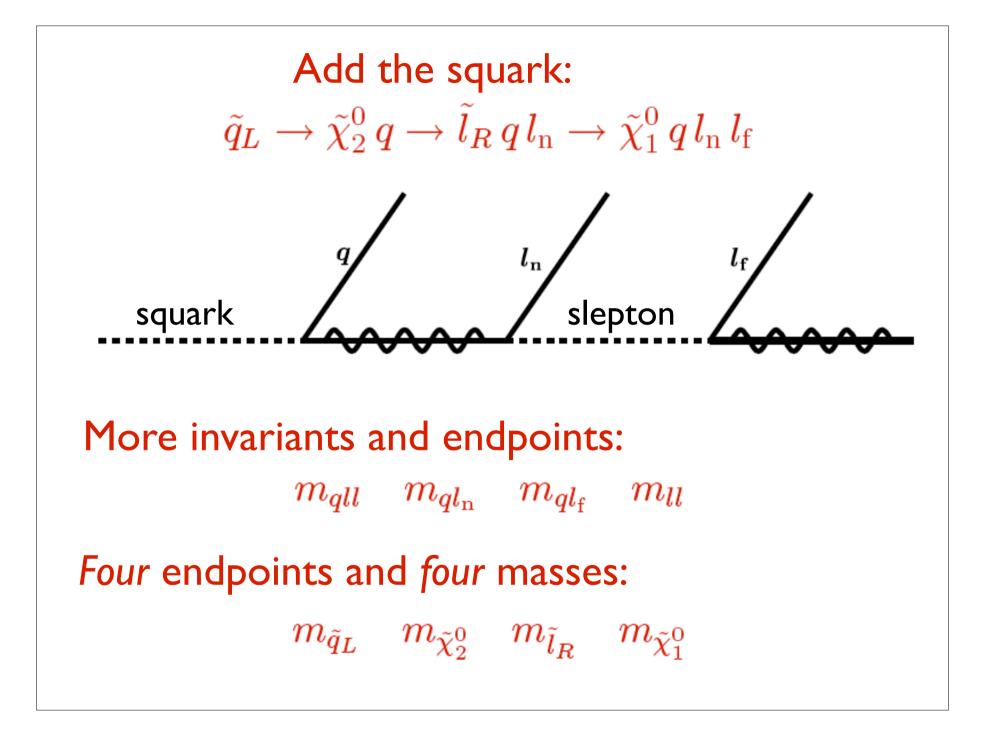
Point	\widetilde{g}	$ ilde{d}_L$	\tilde{d}_R	$ ilde{u}_L$	\tilde{u}_R	\widetilde{b}_2	\widetilde{b}_1	\tilde{t}_2	$ ilde{t}_1$
(α)	595.2	543.0	520.1	537.2	520.5	524.6	491.9	574.6	379.1
(β)	915.5	830.1	799.5	826.3	797.3	800.2	759.4	823.8	610.4
	\tilde{e}_L	\tilde{e}_R	$ ilde{ au}_2$	$ ilde{ au}_1$	$\tilde{\nu}_{e_L}$	$\tilde{\nu}_{\tau_L}$		H^{\pm}	A
(α)	202.1	143.0	206.0	133.4	185.1	185.1		401.8	393.6
(β)	315.6	221.9	317.3	213.4	304.1	304.1		613.9	608.3
	$\tilde{\chi}_4^0$	$ ilde{\chi}^0_3$	$ ilde{\chi}^0_2$	$\tilde{\chi}_1^0$	$\tilde{\chi}_2^{\pm}$	$\tilde{\chi}_1^{\pm}$		Н	h
(α)	377.8	358.8	176.8	96.1	378.2	176.4		394.2	114.0
(β)	553.3	538.4	299.1	161.0	553.3	299.0		608.9	117.9

as determined by ISASUSY 7.58 by integrating RGE's

in **bold**: particles used in study

Maximum di-lepton mass:

Back-to-back in \tilde{l}_R Rest Frame:


$$(m_{ll}^{\max})^2 = 4|\mathbf{p}_{l_n}||\mathbf{p}_{l_f}| = \frac{(m_{\tilde{\chi}_2^0}^2 - m_{\tilde{l}_R}^2)(m_{\tilde{l}_R}^2 - m_{\tilde{\chi}_1^0}^2)}{m_{\tilde{l}_R}^2}$$

Prototype of "endpoint formulas"

One kinematical endpt is related to various (3) masses of unstable particles:

$$m_{ ilde{\chi}_2^0}$$
 $m_{ ilde{l}_R}$ $m_{ ilde{\chi}_1^0}$

Need more such formulas!

B.C.Allanach et al, hep-ph/0007009 (conditions rephrased):

$$(m_{ll}^{\max})^2 = \frac{\left(m_{\tilde{\chi}_2^0}^2 - m_{\tilde{l}_R}^2\right) \left(m_{\tilde{l}_R}^2 - m_{\tilde{\chi}_1^0}^2\right)}{m_{\tilde{l}_R}^2}$$

one case

mass ratios of adjacent sparticles in chain

$$(m_{qll}^{\max})^{2} = \begin{cases} \frac{\left(m_{\tilde{q}_{L}}^{2} - m_{\tilde{\chi}_{2}^{0}}^{2}\right)\left(m_{\tilde{\chi}_{2}^{0}}^{2} - m_{\tilde{\chi}_{1}^{0}}^{2}\right)}{m_{\tilde{\chi}_{2}^{0}}^{2}} & \text{for } \frac{m_{\tilde{q}_{L}}}{m_{\tilde{\chi}_{2}^{0}}^{2}} > \frac{m_{\tilde{\chi}_{2}^{0}}}{m_{\tilde{\chi}_{1}^{0}}^{2}} \frac{m_{\tilde{\chi}_{1}^{0}}}{m_{\tilde{\chi}_{1}^{0}}^{2}} & (1) \\ \frac{\left(m_{\tilde{q}_{L}}^{2} m_{\tilde{l}_{R}}^{2} - m_{\tilde{\chi}_{2}^{0}}^{2} m_{\tilde{\chi}_{1}^{0}}^{2}\right)\left(m_{\tilde{\chi}_{2}^{0}}^{2} - m_{\tilde{l}_{R}}^{2}\right)}{m_{\tilde{\chi}_{2}^{0}}^{2} m_{\tilde{l}_{R}}^{2}} & \text{for } \frac{m_{\tilde{\chi}_{2}^{0}}}{m_{\tilde{\chi}_{1}^{0}}^{2}} > \frac{m_{\tilde{l}_{R}}}{m_{\tilde{\chi}_{1}^{0}}^{2}} & (2) \\ \frac{\left(m_{\tilde{q}_{L}}^{2} - m_{\tilde{l}_{R}}^{2}\right)\left(m_{\tilde{l}_{R}}^{2} - m_{\tilde{\chi}_{1}^{0}}^{2}\right)}{m_{\tilde{l}_{R}}^{2}} & \text{for } \frac{m_{\tilde{l}_{R}}}{m_{\tilde{\chi}_{1}^{0}}} > \frac{m_{\tilde{l}_{R}}}{m_{\tilde{\chi}_{2}^{0}}^{2}} & (2) \\ \frac{\left(m_{\tilde{q}_{L}}^{2} - m_{\tilde{l}_{R}}^{2}\right)\left(m_{\tilde{l}_{R}}^{2} - m_{\tilde{\chi}_{1}^{0}}^{2}\right)}{m_{\tilde{l}_{R}}^{2}} & \text{for } \frac{m_{\tilde{l}_{R}}}{m_{\tilde{\chi}_{1}^{0}}} > \frac{m_{\tilde{q}_{L}}}{m_{\tilde{\chi}_{2}^{0}}^{2}} & (2) \\ \left(m_{\tilde{q}_{L}}^{2} - m_{\tilde{\chi}_{1}^{0}}^{2}\right)^{2} & \text{otherwise } & (4) \end{cases}$$

$$\begin{array}{l} \text{for} \quad \frac{m_{l_R}}{m_{\tilde{\chi}_1^0}} > \frac{m_{\tilde{q}_L}}{m_{\tilde{\chi}_2^0}} \frac{m_{\tilde{\chi}_2^0}}{m_{\tilde{l}_R}} \quad (3) \\ \text{otherwise} \quad (4) \end{array}$$

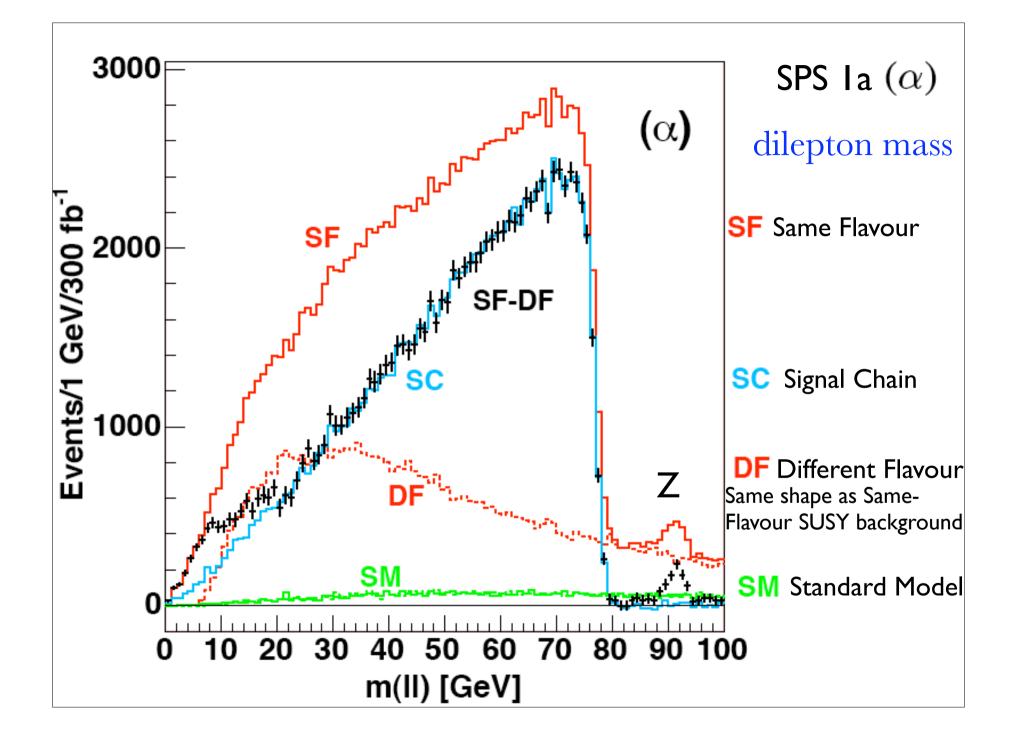
$$\begin{split} \text{where} \qquad & (m_{ql_n}^{\max})^2 = \frac{\left(m_{\tilde{q}_L}^2 - m_{\tilde{\chi}_2^0}^2\right)\left(m_{\tilde{\chi}_2^0}^2 - m_{\tilde{l}_R}^2\right)}{m_{\tilde{\chi}_2^0}^2} \\ & (m_{ql_f}^{\max})^2 = \frac{\left(m_{\tilde{q}_L}^2 - m_{\tilde{\chi}_2^0}^2\right)\left(m_{\tilde{l}_R}^2 - m_{\tilde{\chi}_1^0}^2\right)}{m_{\tilde{l}_R}^2} \\ & (m_{ql(eq)}^{\max})^2 = \frac{\left(m_{\tilde{q}_L}^2 - m_{\tilde{\chi}_2^0}^2\right)\left(m_{\tilde{l}_R}^2 - m_{\tilde{\chi}_1^0}^2\right)}{\left(2m_{\tilde{l}_R}^2 - m_{\tilde{\chi}_1^0}^2\right)} \end{split}$$

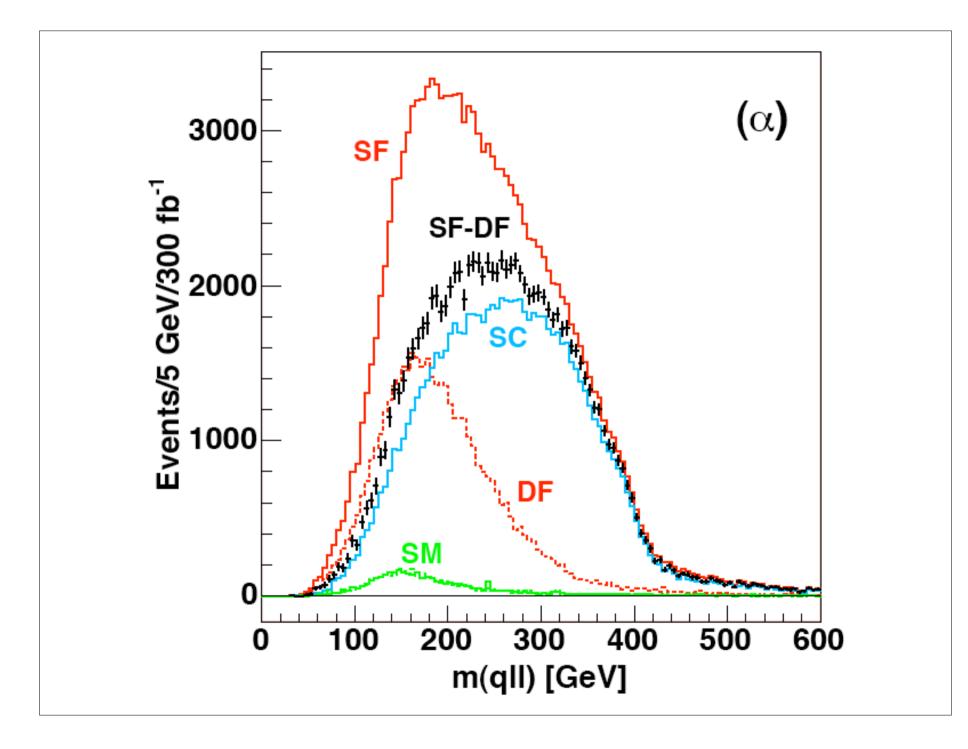
Finally:
$$(m_{qll(\theta>\frac{\pi}{2})})^2 = \left[\left(m_{\tilde{q}_L}^2 + m_{\tilde{\chi}_2^0}^2\right)\left(m_{\tilde{\chi}_2^0}^2 - m_{\tilde{l}_R}^2\right)\left(m_{\tilde{l}_R}^2 - m_{\tilde{\chi}_1^0}^2\right) - \left(m_{\tilde{\chi}_2^0}^2 m_{\tilde{l}_R}^4 m_{\tilde{\chi}_1^0}^2 + 2m_{\tilde{\chi}_2^0}^2\right)\sqrt{\left(m_{\tilde{\chi}_2^0}^2 + m_{\tilde{l}_R}^2\right)^2\left(m_{\tilde{l}_R}^2 + m_{\tilde{\chi}_1^0}^2\right)^2 - 16m_{\tilde{\chi}_2^0}^2 m_{\tilde{l}_R}^4 m_{\tilde{\chi}_1^0}^2 + 2m_{\tilde{l}_R}^2\left(m_{\tilde{q}_L}^2 - m_{\tilde{\chi}_2^0}^2\right)\left(m_{\tilde{\chi}_2^0}^2 - m_{\tilde{\chi}_1^0}^2\right)\right]\left(4m_{\tilde{l}_R}^2 m_{\tilde{\chi}_2^0}^2\right)^{-1} \qquad \text{one case}$$

 θ is opening angle between leptons in \tilde{l}_R rest frame

Over-all: 4×3 cases, denoted (1,1), (1,2), etc.

(9 of 12 are realized)


LHC simulation


- ISAJET 7.58 defines low-energy model
- PYTHIA 6.2 with CTEQ 5L: Monte Carlo sample
- ATLFAST 2.60 simulates ATLAS detector
- precuts:
 - $-\,$ At least three jets, satisfying: $p_T^{\rm jet} > 150, 100, 50~{\rm GeV}$
 - $E_{T,\text{miss}} > \max(100 \text{ GeV}, 0.2M_{\text{eff}})$ with $M_{\text{eff}} \equiv E_{T,\text{miss}} + \sum_{i=1}^{3} p_{T,i}^{\text{jet}}$

- Two isolated opposite-sign same-flavour leptons (e or μ), satisfying $p_T^{\rm lep}>20,10~{\rm GeV}$

SM background: 95% tt

Aim: determine/study expected accuracy

Extraction of masses

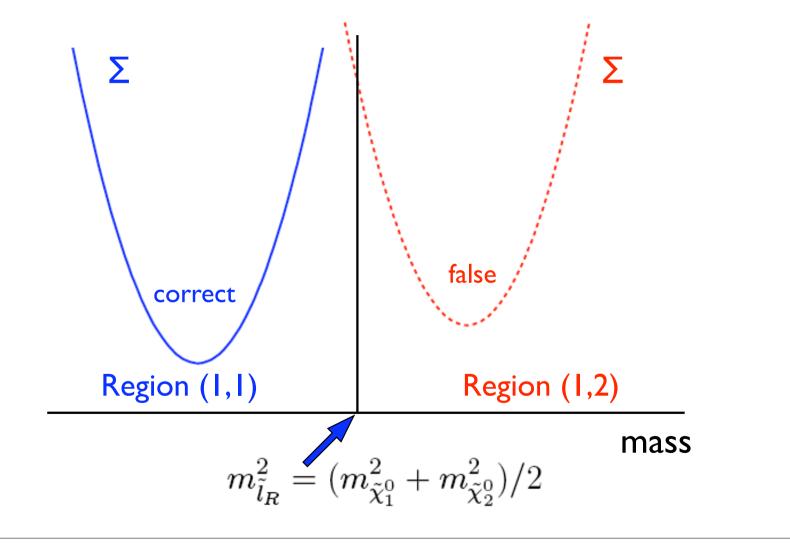
- simulate 10,000 ATLAS 'experiments'
- focus on statistical uncertainty
- each endpoint: gaussian distribution
- invert endpoint formulas, fit masses
- what is chance of finding correct minimum?

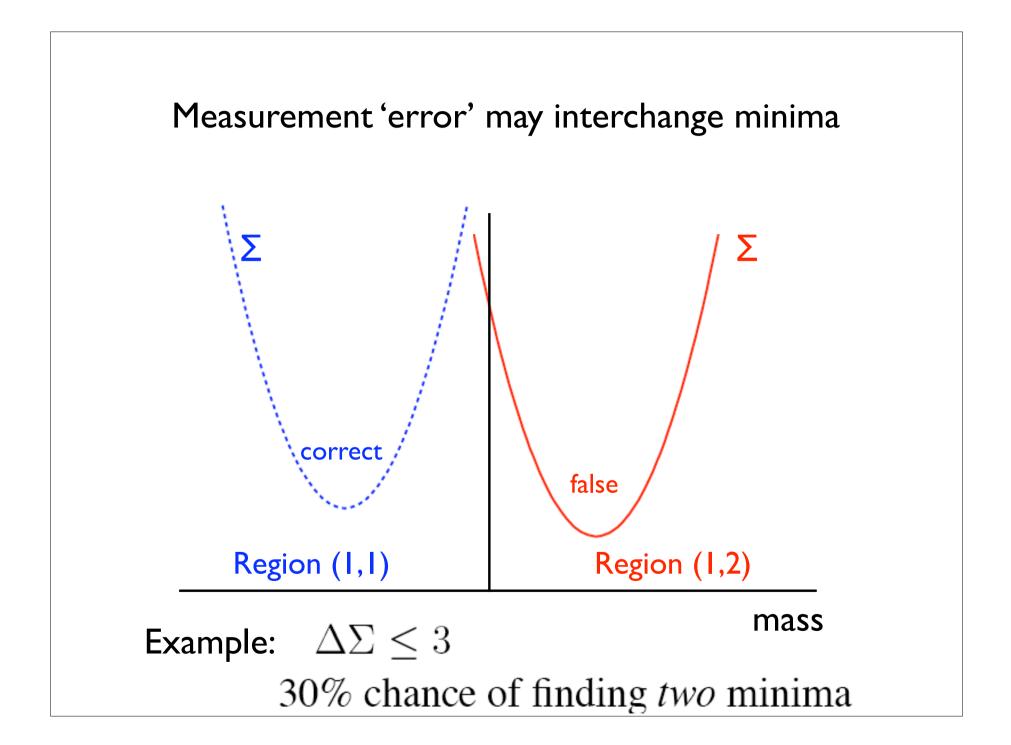
Following Allanach et al, each endpt E_i^{exp} taken as:

$$E_i^{\exp} = E_i^{\operatorname{nom}} + A_i \sigma_i^{\operatorname{stat}} + B \sigma_i^{\operatorname{scale}}$$

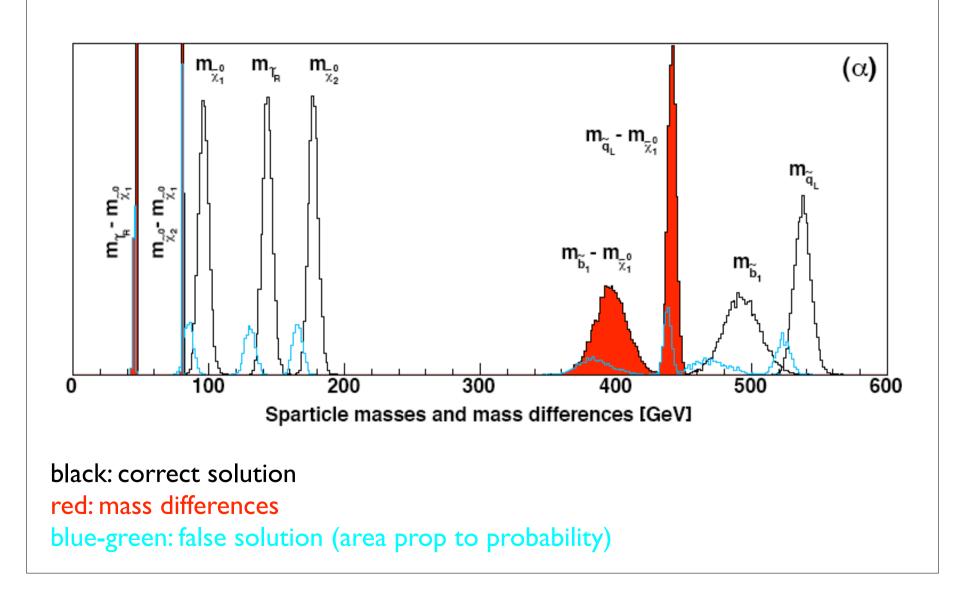
A, B picked from gaussian distribution, mean 0, width 1 One A for each endpoint, one B for m_{ll} , other B for endpoints involving jets

determine masses


Minimize:


$$\Sigma = [\mathbf{E}^{\exp} - \mathbf{E}^{\mathrm{th}}(\mathbf{m})]^T \mathbf{W} [\mathbf{E}^{\exp} - \mathbf{E}^{\mathrm{th}}(\mathbf{m})]$$

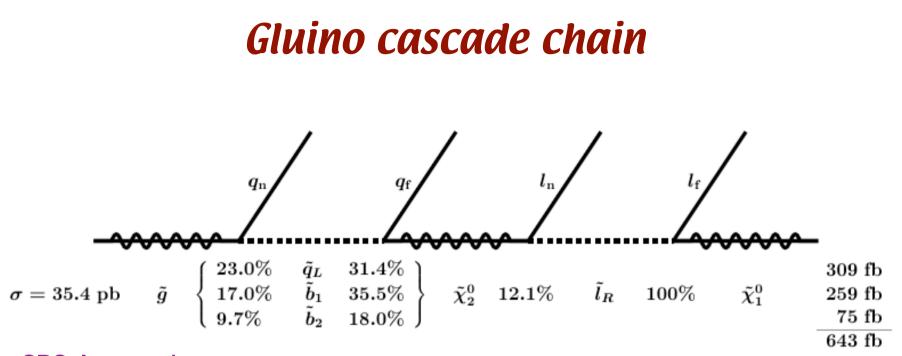
 ${f W}$ inverse error/correlation matrix


SPS Ia (α) $\Delta \Sigma \leq 1$							
nominal correct fit false fit							
		(1,1)			(1,2)		
	Nom	$\langle m angle$	σ	γ_1	$\langle m angle$	σ	γ_1
$m_{ ilde{\chi}_1^0}$	96.1	96.3	3.8	0.2	85.3	3.4	0.1
$m_{\tilde{l}_R}$	143.0	143.2	3.8	0.2	130.4	3.7	0.1
$m_{ ilde{\chi}^0_2}$	176.8	177.0	3.7	0.2	165.5	3.4	0.1
$m_{ ilde q_L}$	537.2	537.5	6.1	0.1	523.2	5.1	0.1
$m_{ ilde{b}_1}$	491.9	492.4	13.4	0.0	469.6	13.3	0.1
$m_{\tilde{l}_R} - m_{\tilde{\chi}_1^0}$	46.9	46.9	0.3	0.0	45.1	0.7	-0.2
$m_{\tilde{\chi}^0_2} - m_{\tilde{\chi}^0_1}$	80.8	80.8	0.2	0.0	80.2	0.3	-0.1
$m_{\tilde{q}_L}^{\chi_2} - m_{\tilde{\chi}_1^0}^{\chi_1}$	441.2	441.3	3.1	0.0	438.0	2.7	0.0
$m_{\tilde{b}_1} - m_{\tilde{\chi}_1^0}$	395.9	396.2	12.0	0.0	384.4	12.0	0.1
Note:Three lightest masses are very correlated							

Problem due to compositeness of formulas: If masses are close to border of 'region', may find a similar-quality or better minimum in 'other' region

Masses and mass differences

LC input	("fixing"	LSP	mass)	
----------	-----------	-----	-------	--

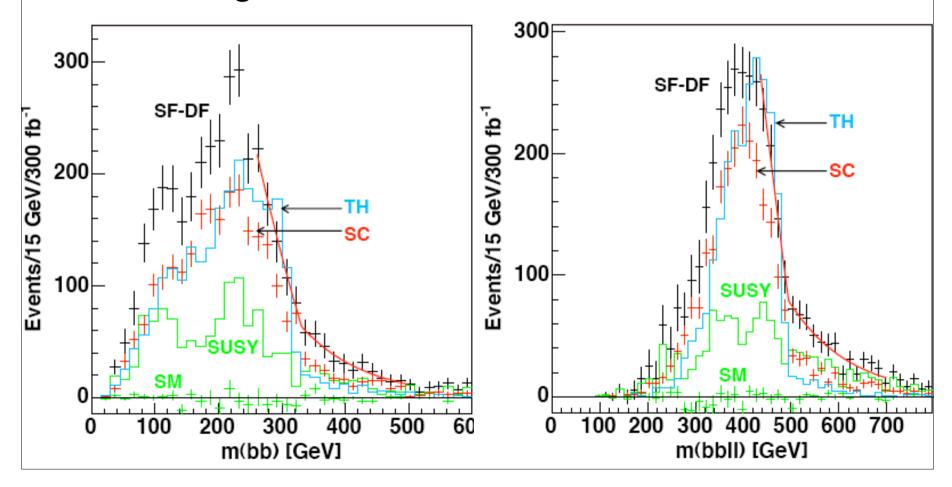

SPS Ia (α)

		(1,1)		
	Nom	$\langle m \rangle$	σ	
$ ilde{\chi}_1^0$	96.05	96.05	0.05	
\tilde{l}_R	142.97	142.97	0.29	
$ ilde{\chi}_2^0$	176.82	176.82	0.17	
\tilde{q}_L	537.25	537.2	2.5	
$ ilde{b}_1$	491.92	492.1	11.7	

Masses in GeV

${\rm SPS}\,\,{\rm Ia}\,(\beta)$

		1 solu	tion	2 solutions				
		<i>(1,2)/(1,3)</i> /B		(1,2)		(1,3)		
	Nom	$\langle m \rangle$	σ	$\langle m \rangle$	σ	$\langle m \rangle$	σ	
$ ilde{\chi}_1^0$	161.02	161.02	0.05	161.02	0.05	161.02	0.05	
\tilde{l}_R	221.86	221.15	3.26	222.22	1.32	217.48	1.01	
$ ilde{\chi}^0_2$	299.05	299.15	0.57	299.11	0.53	299.05	0.52	
\tilde{q}_L	826.29	826.1	6.3	825.9	5.8	828.6	5.5	


SPS Ia numbers

Several new kinematical edges involving q_n Only one new mass, need (minimum) only one more edge

LHC simulation analogous to squark study

To reduce (SUSY) background, require two *b* jets The majority of \tilde{b} 's are produced indirectly from gluino decay

SUSY background reduced from 80% to 35%

		(1,1)		
	Nom	Mean	RMS	
$m_{ ilde{\chi}_1^0}$	96.05	96.05	0.05	
$m_{\tilde{l}_R}$	142.97	142.97	0.29	
$m_{ ilde{\chi}^0_2}$	176.82	176.82	0.17	
$m_{ ilde q_L}$	537.2	537.2	2.5	
$m_{ ilde{b}_1}$	491.9	491.9	10.9	
$m_{ ilde{g}}$	595.2	595.2	5.5	
$m_{ ilde{g}} - m_{ ilde{b}_1}$	103.3	103.3	9.0	

Mass values (all in GeV) from LHC+LC. Occurrences of (1,2) solutions are reduced to $\sim 1\%$, and left out.

Summary

- SPS Ia SUSY masses can be determined with precision 4-10 GeV
- Non-zero probability of fitting wrong minimum (could be off by 10-20 GeV)
- Gluino mass can be obtained using two b jets
- LC input on LSP mass (σ = 50 MeV) removes ambiguity
- LC input increases precision from 6 GeV (~15 GeV if wrong minimum) to 2.5 GeV