LCWS05 March 2005

Neutrinos in Supersymmetry

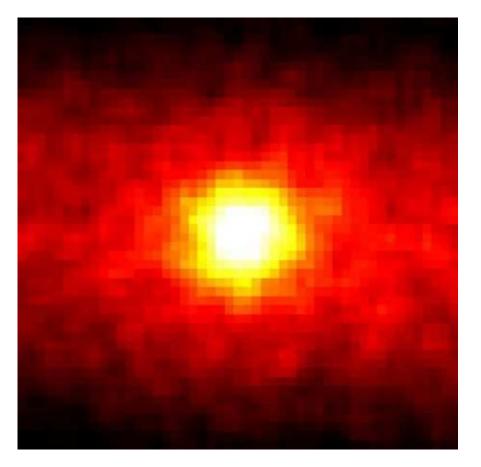
Marco Aurelio Díaz Universidad Católica de Chile

Solar Neutrinos

Nuclear reactions in the core of the sun produce neutrinos via the reaction: $4p \rightarrow {}^{4}He + 2e^{+} + \gamma + 2\nu_{e}$

Experiments have measured the flux of electron neutrinos arriving to the Earth from the Sun, and found a much lower flux than expected.

→ Solar Neutrino Anomaly



Solution: Neutrinos oscillate $v_e \rightarrow v_{\mu/\tau}$

Atmospheric Neutrinos

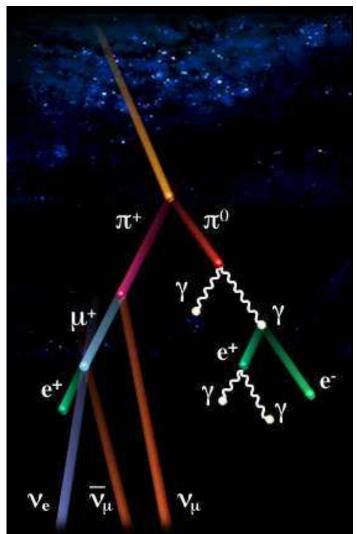
Atmospheric neutrinos: produced in cascade decays after cosmic rays hit the atmosphere.

- pion decays: $\pi^+
 ightarrow \mu^+ +
 u_\mu$
- muon decay: $\mu^+ \rightarrow e^+ + \nu_e + \overline{\nu}_{\mu}$

Expected: $2v_{\mu}$ per each v_e . Measurements indicate a strong deficit of muon neutrinos.

→ Atmospheric Neutrino Anomaly

Solution: Neutrinos oscillate $u_{\mu}
ightarrow
u_{ au}$



Neutrino Oscillations

The neutrino mass matrix is diagonalized by the rotation matrix V_{PMNS} , such that the mass eigenstates evolve in time as

$$\psi_i = \sum_j e^{-iE_j t} V_{PMNS}^{ij} \psi_j$$

Calculating transition probabilities in the ultra-relativistic limit, where m^2

$$E_i \approx |\vec{p}| + \frac{m_i^2}{2|\vec{p}|}$$

leads to results (in the two neutrino approximation) like

$$P_{\nu_i \to \nu_j} = \sin^2(2\theta) \sin^2\left(1.27 \frac{\Delta m^2 L}{E}\right)$$

where θ is the mixing angle.

Three Neutrinos

A general 3×3 neutrino mass matrix is diagonalize by a Pontecorvo-Maki-Nakagawa-Sakata matrix of the type

$$V_{PMNS} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13} \\ 0 & 1 & 0 \\ -s_{13} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

- θ_{23} : atmospheric angle
- θ_{13} : reactor angle
- θ_{12} : solar angle
- Δm_{23}^2 : atmospheric squared mass difference
- Δm_{12}^2 : solar squared mass difference

Experimental Constraints

Experimental results are consistent with the following values of the mixing angles and masses:

There is no direct measurement of the scale of neutrino masses.

From Table 1 (3 σ values) hep-ph/0405172, M. Maltoni, T. Schwetz, M. Tortola, J. W. F. Valle

Bilinear R-Parity Violation

R-Parity and Lepton Number are violated by bilinear terms in the superpotential. The three parameters ϵ_{τ} , ϵ_{μ} , ϵ_{e} have units of mass:

$$W = W_{MSSM} + \epsilon_i \widehat{L}_i \widehat{H}_u$$

These terms induce sneutrino vacuum expectation values $\langle \tilde{v}_i \rangle = v_i$, which contribute to the gauge boson masses:

$$v_u^2 + v_d^2 + v_1^2 + v_2^2 + v_3^3 = v^2 \sim (246 \,\text{GeV})^2$$

In the soft supersymmetry breaking potential the following terms are added:

$$V^{soft} = V^{soft}_{MSSM} + B_i \epsilon_i \widetilde{L}_i H_u$$

Neutralinos and Three Neutrinos

In basis $(\psi^0)^T = (-i\lambda', -i\lambda^3, \widetilde{H}_1^1, \widetilde{H}_2^2, \nu_e, \nu_\mu, \nu_\tau)$ the neutralino/neutrino mass matrix is

 $\mathbf{M}_N =$

M_1	0	$-\frac{1}{2}g'v_d$	$\frac{1}{2}g'v_u$	$-\frac{1}{2}g'v_1$	$-\frac{1}{2}g'v_2$	$-\frac{1}{2}g'v_3$
0	M_2	$\frac{1}{2}gv_d$	$-\frac{1}{2}gv_u$	$\frac{1}{2}gv_1$	$\frac{1}{2}gv_2$	$\frac{1}{2}gv_3$
$-\frac{1}{2}g'v_d$	$\frac{1}{2}gv_d$	0	$-\mu$	0	0	0
$\frac{1}{2}g'v_u$	$-\frac{1}{2}gv_u$	$-\mu$	0	ϵ_1	ϵ_2	ϵ_3
$-\frac{1}{2}g'v_1$	$\frac{1}{2}gv_1$	0	ϵ_1	0	0	0
$-\frac{1}{2}g'v_2$	$\frac{1}{2}gv_2$	0	ϵ_2	0	0	0
$-\frac{1}{2}g'v_3$	$\frac{1}{2}gv_3$	0	ϵ_3	0	0	0

and a neutrino 3×3 mass matrix is induced.

Low Energy See-Saw

Low energy see-saw mechanism with three neutrinos

$$\mathbf{M}_N = \begin{bmatrix} \mathcal{M}_{\chi^0} & m^T \\ m & 0 \end{bmatrix} \Longrightarrow m_{eff} = -m \cdot \mathcal{M}_{\chi^0}^{-1} \cdot m^T$$

defining $\Lambda_i = \mu v_i + \epsilon_i v_d$, which are proportional to the sneutrino vev's v'_i , the effective mass matrix is

$$m_{eff} = \frac{M_1 g^2 + M_2 g'^2}{4 \, det(\mathcal{M}_{\chi^0})} \begin{bmatrix} \Lambda_e^2 & \Lambda_e \Lambda_\mu & \Lambda_e \Lambda_\tau \\ \Lambda_e \Lambda_\mu & \Lambda_\mu^2 & \Lambda_\mu \Lambda_\tau \\ \Lambda_e \Lambda_\tau & \Lambda_\mu \Lambda_\tau & \Lambda_\tau^2 \end{bmatrix} \sim A^{(0)} \Lambda_i \Lambda_j$$

and only one neutrino acquire mass at tree level

$$m_{\nu_3} = Tr(m_{eff}) = \frac{M_1 g^2 + M_2 {g'}^2}{4 \det(\mathcal{M}_{\chi^0})} |\vec{\Lambda}|^2$$

- p.9/38

Neutrino Angles at Tree Level

The diagonalization $V_{\nu}^T m_{eff} V_{\nu} = \text{diag}(0, 0, m_{\nu})$ is performed with two rotations:

$$V_{\nu} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \theta_{23} & -\sin \theta_{23} \\ 0 & \sin \theta_{23} & \cos \theta_{23} \end{bmatrix} \times \begin{bmatrix} \cos \theta_{13} & 0 & -\sin \theta_{13} \\ 0 & 1 & 0 \\ \sin \theta_{13} & 0 & \cos \theta_{13} \end{bmatrix}$$

The atmospheric angle θ_{23} and the reactor angle θ_{13} are simple functions of the Λ_i

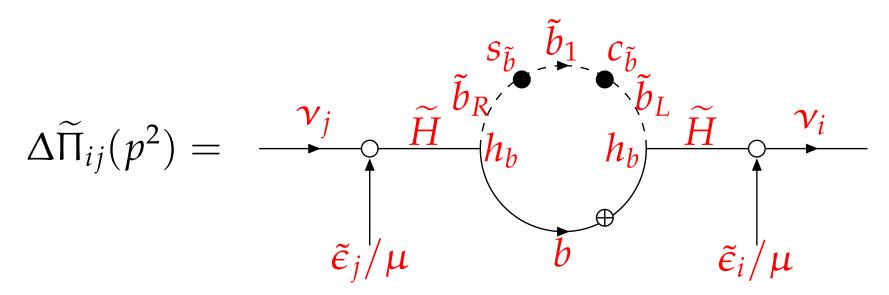
$$\tan \theta_{23} = -\frac{\Lambda_{\mu}}{\Lambda_{\tau}} \qquad \tan \theta_{13} = -\frac{\Lambda_{e}}{\sqrt{\Lambda_{\mu}^{2} + \Lambda_{\tau}^{2}}}$$

and the solar angle is undefined at tree level.

Neutrinos at One Loop

- Based on work by,
- M.A. Díaz, M. Hirsch, W. Porod, J. Romao, J.W.F. Valle
- Phys. Rev. D68, 013009 (2003) Phys. Rev. D62, 113008 (2000), E: D65, 119901 (2002) Phys. Rev. D61, 071703 (2000)

Simplified Bottom Sbottom Loop

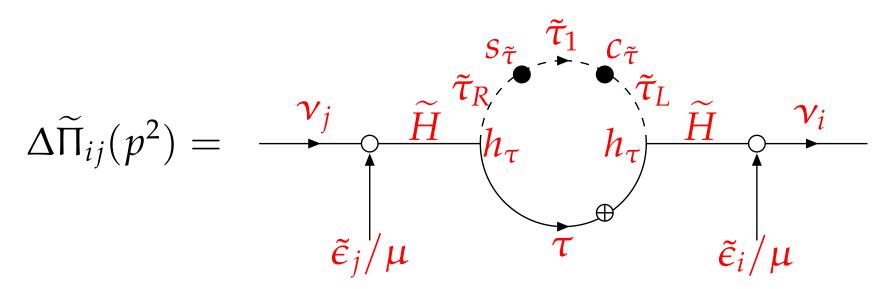


$$\approx -\frac{N_c m_b}{16\pi^2} \Big\{ 2s_{\tilde{b}} c_{\tilde{b}} h_b^2 \frac{\tilde{\epsilon}_i \tilde{\epsilon}_j}{\mu^2} \Big[B_0(p^2, m_{\tilde{b}_1}^2, m_b^2) - B_0(p^2, m_{\tilde{b}_2}^2, m_b^2) \Big] \Big\}$$

- Proportional to the bottom quark Yukawa squared
- Quadratic in the ϵ parameters
- Finite
- Approximately proportional to $\log(m_{\tilde{b}_1}^2/m_{\tilde{b}_2}^2)$

- p.12/38

Simplified Tau Stau Loop

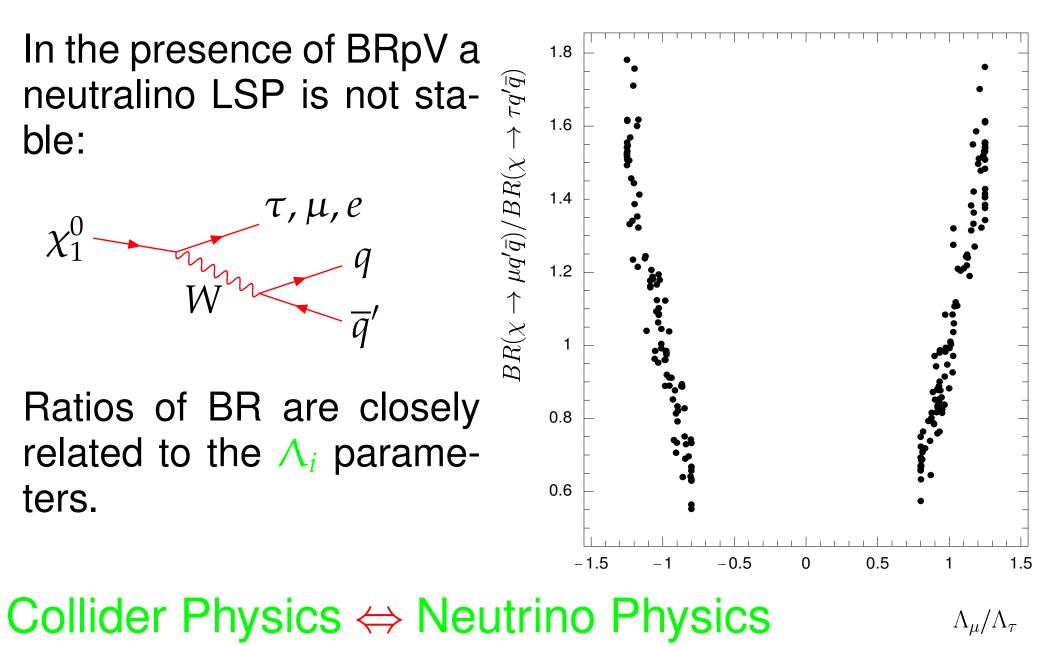


$$\approx -\frac{m_{\tau}}{16\pi^{2}} \Big\{ 2s_{\tilde{\tau}} c_{\tilde{\tau}} h_{\tau}^{2} \frac{\tilde{\epsilon}_{i} \tilde{\epsilon}_{j}}{\mu^{2}} \big[B_{0}(p^{2}, m_{\tilde{\tau}_{1}}^{2}, m_{\tau}^{2}) - B_{0}(p^{2}, m_{\tilde{\tau}_{2}}^{2}, m_{\tau}^{2}) \big] \Big\}$$

- Proportional to the tau lepton Yukawa squared
- Quadratic in the ϵ parameters
- Finite
- Approximately proportional to $\log(m_{\tilde{\tau}_1}^2/m_{\tilde{\tau}_2}^2)$

- p.13/38

Neutralino Decays



. - p.14/38

AMSB: Three Neutrinos

- Based on work by,
- F. de Campos, M.A. Díaz, O.J.P. Eboli, R.A. Lineros, M.B. Magro, and P.G. Mercadante
- hep-ph/0409043

AMSB Reference Scenario

We work in the following AMSB scenario

 $m_{3/2} = 35$ TeV, $m_0 = 250$ GeV, $\tan \beta = 15$, $\operatorname{sign}(\mu) < 0$.

and spectrum part of the spectrum is

- $m_{\chi_1^0} = 108.17$ GeV, lightest neutralino (LSP)
- $m_{\chi_1^\pm} = 108.18$ GeV, lightest chargino
- $m_{\tilde{\tau}_1} = 155$ GeV, lightest charged slepton
- $m_{\tilde{\nu}_{\tau}} = 191$ GeV, lightest sneutrino
- $m_{\tilde{t}_1} = \text{GeV}$, lightest squark
- $m_h = 112 \text{ GeV}$, lightest Higgs boson
- $m_{H^{\pm}} = 600$ GeV, charged Higgs boson

BRpV Reference Scenario

We work in the following BRpV scenario

$$\begin{split} \epsilon_1 &= -0.015 \; \text{GeV} \;, & \Lambda_1 &= -0.03 \; \text{GeV}^2 \;, \\ \epsilon_2 &= -0.018 \; \text{GeV} \;, & \Lambda_2 &= -0.09 \; \text{GeV}^2 \;, \\ \epsilon_3 &= 0.011 \; \text{GeV} \;, & \Lambda_3 &= -0.09 \; \text{GeV}^2 \;. \end{split}$$

predicting the following neutrino physics parameters at one loop

$$\begin{split} \Delta m_{\rm atm}^2 &= 2.5 \times 10^{-3} \, {\rm eV}^2 \,, & \tan^2 \theta_{\rm atm} = 0.73 \,, \\ \Delta m_{\rm sol}^2 &= 7.8 \times 10^{-5} \, {\rm eV}^2 \,, & \tan^2 \theta_{\rm sol} = 0.47 \,, \\ m_{ee} &= 0.0043 \, {\rm eV} \,, & \tan^2 \theta_{13} = 0.033 \,, \end{split}$$

within experimental bounds.

Texture: Numerical View

The one-loop neutrino mass matrix has the form

 $\mathbf{M}^{\text{eff}} \approx \begin{bmatrix} \lambda & 2\lambda & \lambda \\ 2\lambda & a & b \\ \lambda & b & m \end{bmatrix}$ m = 0.031 eV, $\lambda \approx 0.12$, a/m = 0.74, b/m = 0.66. The two heavy neutrinos have an approximated mass $m_{\nu_{2,3}} \approx \frac{1}{2} \left| m + a \pm \sqrt{(m-a)^2 + 4b^2} \right|$ leading to $\Delta m_{\rm atm}^2 \approx 2.3 \times 10^{-3} {\rm eV}^2$. Atm mixing angle is $\tan 2\theta_{\rm atm} \approx \frac{2b}{m-a}$ leading to $\tan^2 \theta_{atm} \approx 0.68$, in agreement with complete results. - p.18/38

Texture: Theoretical View The neutrino mass matrix can be approximated to $\mathbf{M}_{ij}^{\text{eff}} = A\Lambda_i\Lambda_j + B(\epsilon_i\Lambda_j + \epsilon_j\Lambda_i) + C\epsilon_i\epsilon_j,$ with $A \approx 3 \text{ eV/GeV}^4$, $B \approx -2 \text{ eV/GeV}^3$, and $C \approx 15 \text{ eV/GeV}^2$. Neglecting further small terms, $\mathbf{M}^{\text{eff}} \approx$

 $A\Lambda_{1}^{2} + 2B\Lambda_{1}\epsilon_{1} + C\epsilon_{1}^{2} \sim \sim$ $A\Lambda_{1}\Lambda_{2} + B(\epsilon_{1}\Lambda_{2} + \epsilon_{2}\Lambda_{1}) + C\epsilon_{1}\epsilon_{2} A\Lambda_{2}^{2} + 2B\epsilon_{2}\Lambda_{2} \sim$ $A\Lambda_{1}\Lambda_{3} + C\epsilon_{1}\epsilon_{3} A\Lambda_{2}\Lambda_{3} A\Lambda_{3}^{2} + 2B\epsilon_{3}\Lambda_{3}$

- One-loop genereted parameters *B* and *C* are very important.
- Small values of ϵ_i and Λ_1 imply small λ , which imply small solar and reactor angle.

Approximations

Neglecting terms in the first column and row we find for the atmospheric angle

$$\tan 2\theta_{\rm atm} = \frac{2A\Lambda_2\Lambda_3}{A(\Lambda_3^2 - \Lambda_2^2) + 2B(\epsilon_3\Lambda_3 - \epsilon_2\Lambda_2)} \,.$$

and the heavier neutrino masses

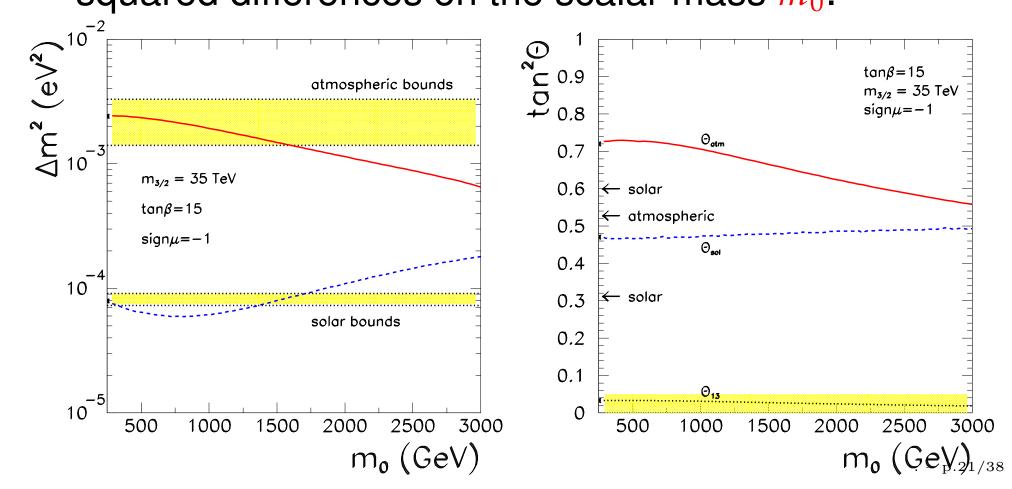
$$m_{\nu_{2,3}} = \frac{1}{2}A(\Lambda_3^2 + \Lambda_2^2) + B(\epsilon_3\Lambda_3 + \epsilon_2\Lambda_2) \pm \sqrt{\left[\frac{1}{2}A(\Lambda_3^2 - \Lambda_2^2) + B(\epsilon_3\Lambda_3 - \epsilon_2\Lambda_2)\right]^2 + A^2\Lambda_2^2\Lambda_3^2} ,$$

with

$$\Delta m_{atm}^2 = m_{\nu_3}^2 - m_{\nu_2}^2$$
, $\Delta m_{sol}^2 \approx m_{\nu_2}^2$

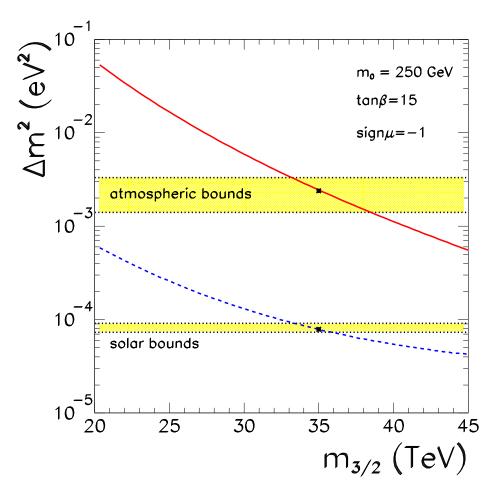
Scalar Mass Dependence

- At tree level only v_3 has non zero mass.
- Radiative corrections are important.
- Strong dependence of atmospheric and solar mass squared differences on the scalar mass m_0 .



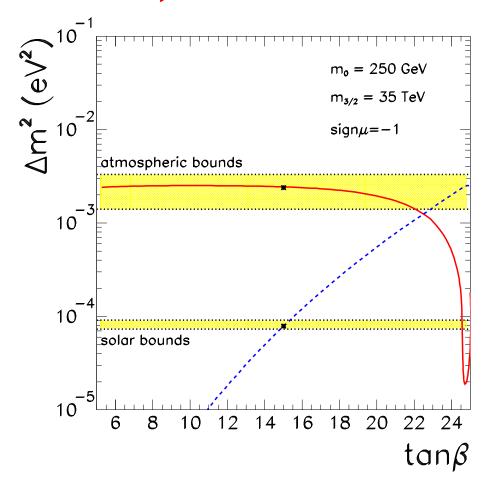
Gravitino Mass Dependence

- Very strong monotonically descendent dependence of atmospheric and solar mass squared differences on the gravitino mass M_{3/2}.
 - Solutions in a small band near $M_{3/2} = 35$ TeV.
 - This band depends on the values of $\tan \beta$ and m_0 .



Tan(beta) Dependence

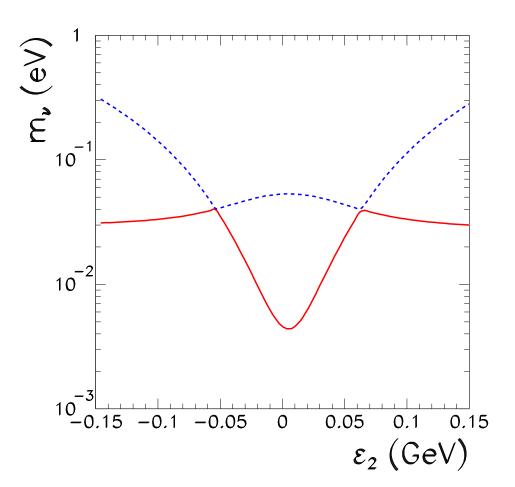
- Very strong dependence of atmospheric and solar mass squared differences on tan β.
 - Solutions in a small band near $M_{3/2} = 35$ TeV.
 - This band depends on the values of $\tan \beta$ and m_0 .
 - At large tan β radiative corrections become very important.



Epsilon2 dependence

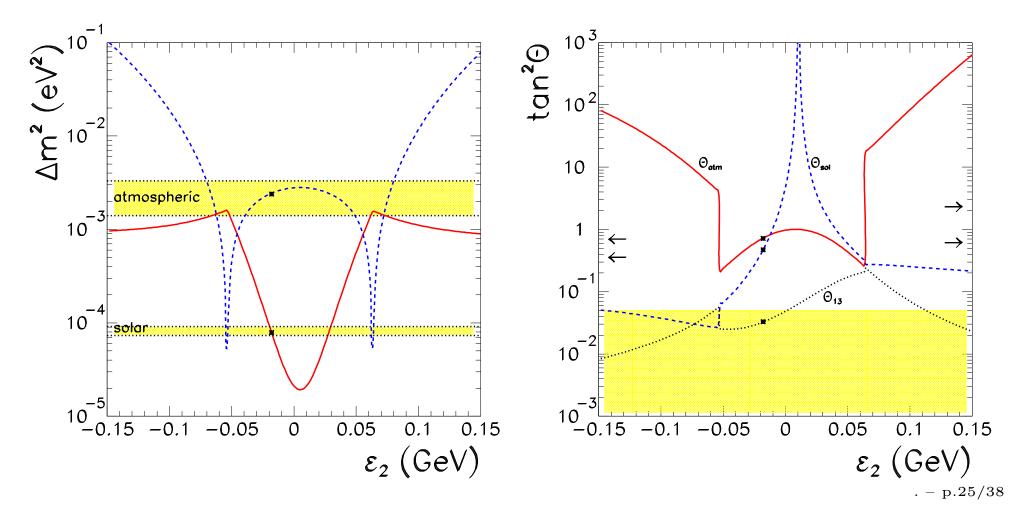
Masses of the two heavy neutrinos as a function of ϵ_2 .

- The eigenvalue which is less dependent on
 \$\vec{\epsilon_2}\$ has a large tree level component.
- Radiative corrections are very important for large values of *e*₂.
- Lightest neutrino mass is smaller than 5×10^{-5} eV.



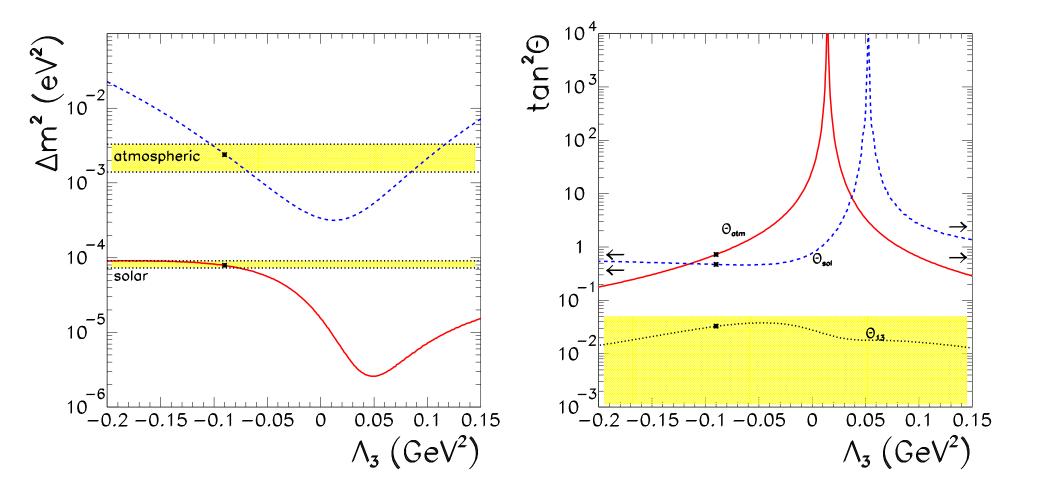
Epsilon2 Dependence

- There is a very large dependence of the mass differences and mixing angles on ϵ_2 .
- Spikes are due to eigenvalue crossing.



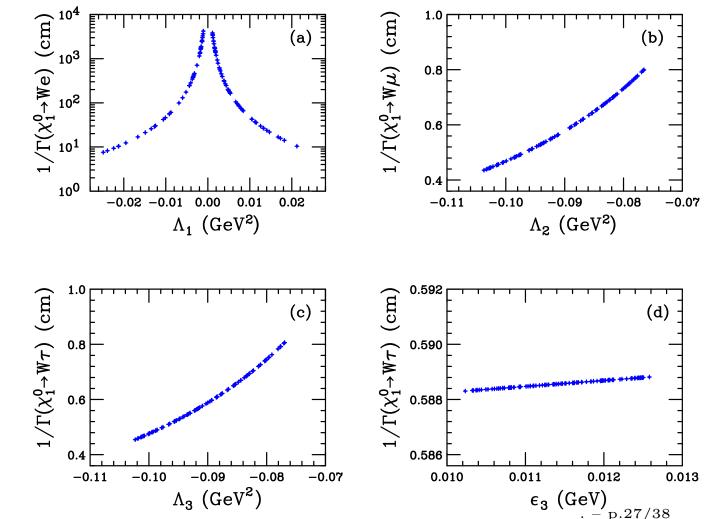
Lambda3 Dependence

• There is a large dependence of the mass differences and mixing angles on Λ_3 .



Neutralino Decays

- $\Gamma(\chi_1^0 \to We)$ depends only on Λ_1 .
- $\Gamma(\chi_1^0 \to W \mu)$ depends only on Λ_2 .
- $\Gamma(\chi_1^0 \to W\tau)$ depends on Λ_3 and only weakly On ϵ_3 .
- The LSP decays inside the detector.
- $\Lambda_1 = 0$ also is a good solution.



Sugra: Three Neutrinos

- Based on work by,
- M.A. Díaz, Clemencia Mora, and Alfonso Zerwekh hep-ph/0410285

Sugra Parameters at the GUT Scale

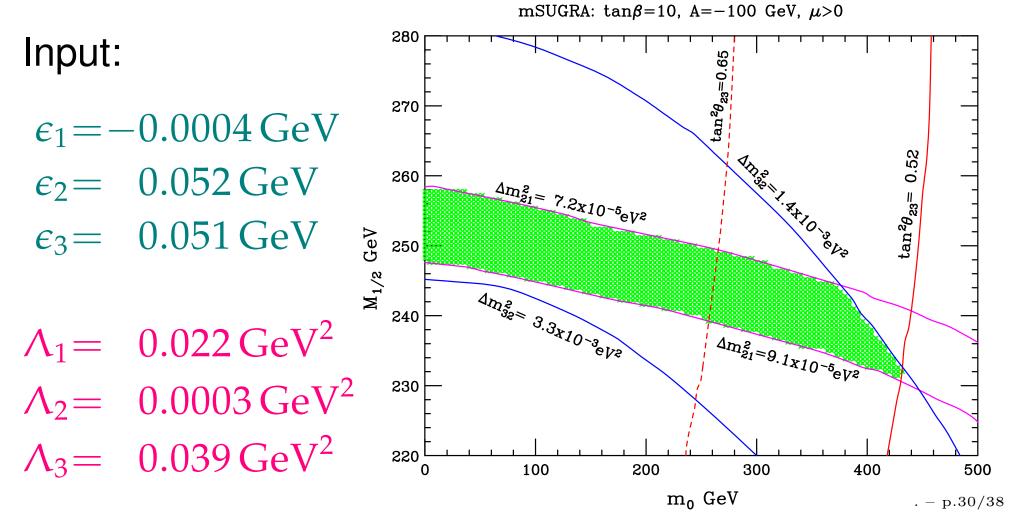
Sugra is characterized by the following parameters, all defined at the GUT scale, exept fot $\tan \beta$ which is defined at the SUSY scale:

- m_0 : Universal scalar mass.
- $M_{1/2}$: Universal gaugino mass.
- $\tan \beta$: Ratio between vev's.
- A_0 : Common trilinear coupling.
- $sign(\mu)$: Sign of higgsino mass.

In BRpV we add ϵ_i and Λ_i as input at the SUSY scale.

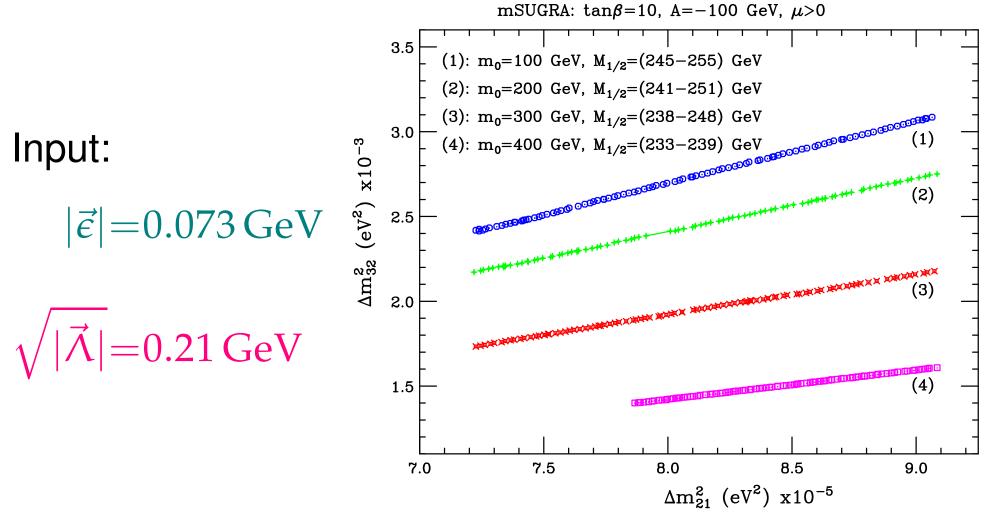
Neutrinos in Supergravity

Solutions to neutrino physics in a Sugra model with universal soft terms at the GUT scale, exept for ϵ_i and $B_i (\Rightarrow \Lambda_i)$, which are free at the weak scale.



Atmospheric Neutrinos in Sugra

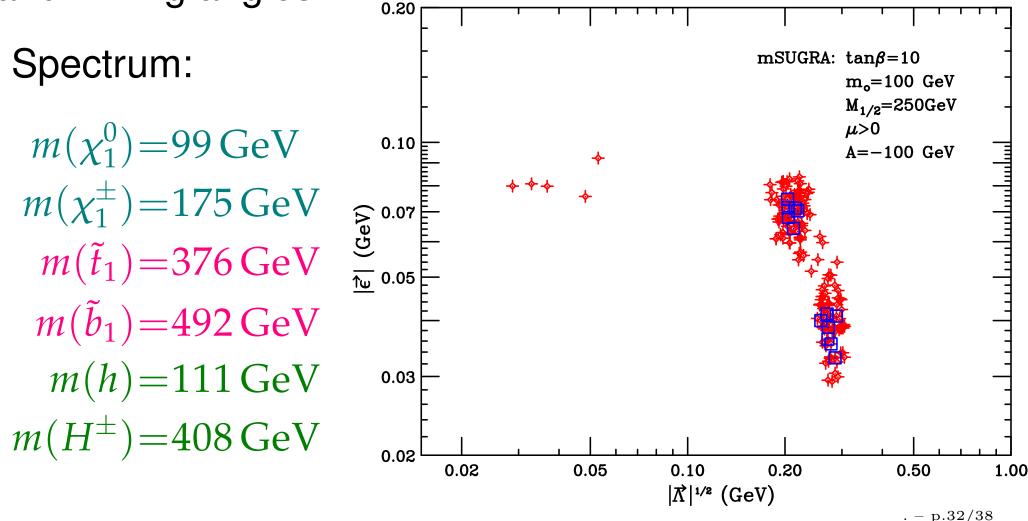
Influence of universal scalar mass m_0 and universal gaugino mass $M_{1/2}$ on the atmospheric mass and angle.



. - p.31/38

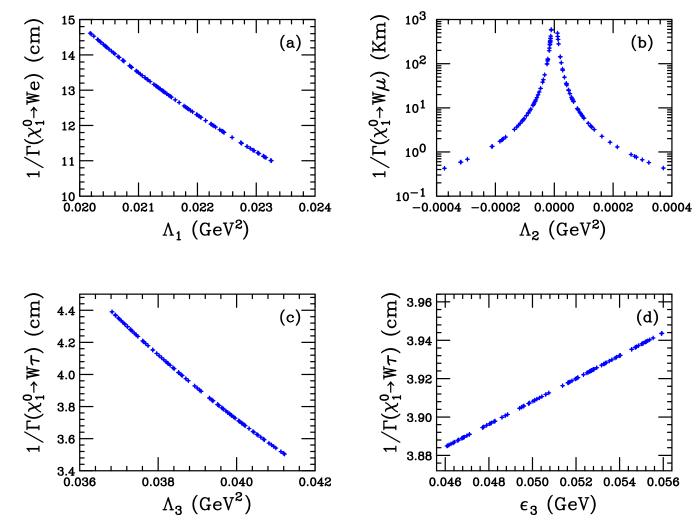
Sugra: scan on neutrino parameters

For a fixed sugra point in parameter space, ϵ_i and Λ_i are randomly varied, accepting solutions with good masses and mixing angles.



Neutralino Decays

The lighest neutralino χ_1^0 decays into a W boson and a charged lepton.



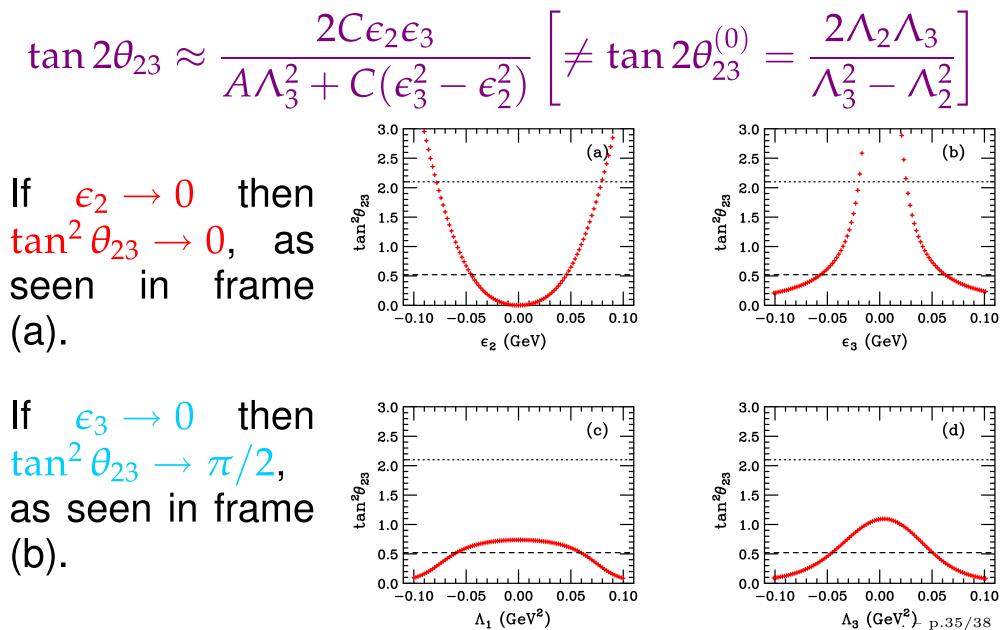
Atmospheric Mass

The atmospheric mass can be approximated as $\Delta m_{32}^2 \approx \frac{3}{2}\sqrt{5}(A\Lambda_3^2 + C\epsilon_3^2)C\epsilon_2^2$

 10^{-3} Δm_{32}^2 (eV²) x 10⁻³ (a) b \m22 (eV²) x 3 3 the explaining quadratic depen-0.05 0.10 -0.050.00 0.05 0.10 -0.100.00 -0.10-0.05dence of Δm_{32}^2 ϵ_2 (GeV) ϵ_3 (GeV) on ϵ_2 , ϵ_3 , and Λ_3 , and the mild Δm_{32}^2 (eV²) x 10⁻³ Δm_{32}^2 (eV²) x 10⁻³ dependence on 3 3 Λ_1 0 0.05 0.10 0.00 0.05 0.10 -0.10-0.050.00 -0.10-0.05 Λ_1 (GeV²) $\Lambda_3 (\text{GeV}^2)$

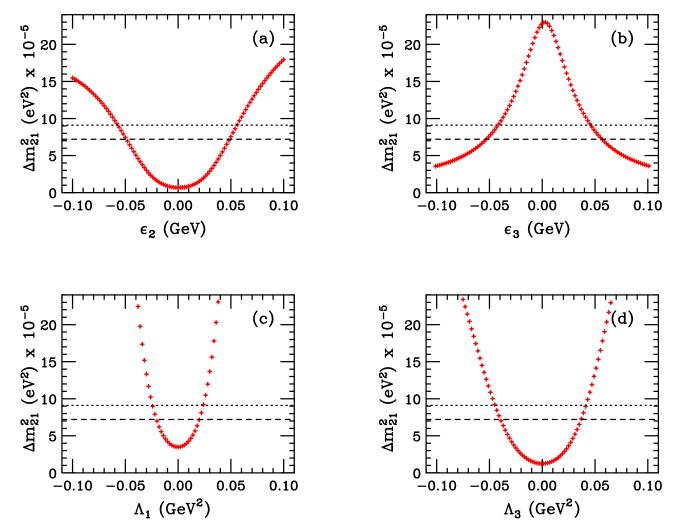
Atmospheric Angle

The atmospheric angle can be approximated as



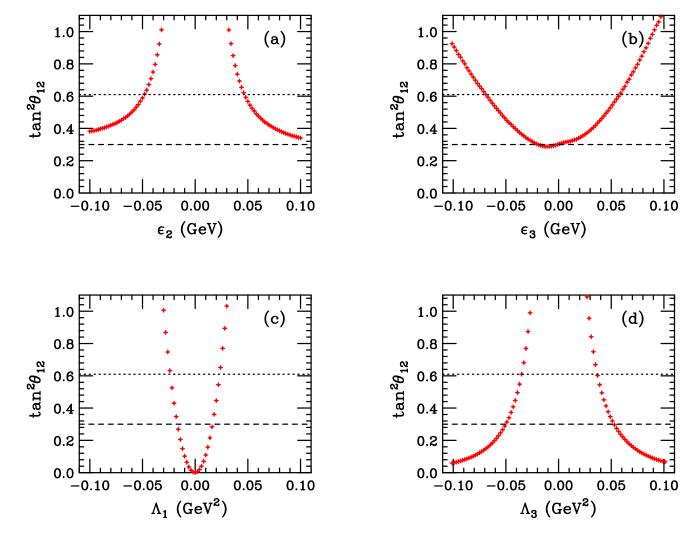
Solar Mass

The allowed region is a very narrow band. The four BRpV parameters have a strong influence on the solar mass.



Solar Angle

The solar angle is not maximal, and depends on all four BRpV parameters.



Conclusions

- Supersymmetry with Bilinear R-Parity Violation provides a framework for neutrino masses and mixing angles compatible with experiments.
- At tree level, a low energy see saw mechanism gives mass to one neutrino. One loop corrections complete the three neutrino masses and mixing angles.
- Neutrino parameters can be extracted from collider physics, and can help to differentiate supersymmetric models.