Distinguishing between MSSM and NMSSM via combined LHC/ILC analyses

Gudrid Moortgat-Pick (CERN)

S. Hesselbach, F. Franke, H. Fraas Susy Session 'LCWS05'@Stanford, March, 19th, 2005

• The question: distinction of MSSM↔NMSSM always obvious?

- \rightarrow MSSM parameter determination
- \rightarrow numerical example (including some exp. errors)
- \rightarrow assumption: no separation@ILC₅₀₀ possible
- The answer:
 - \rightarrow LHC/ILC interplay
 - \rightarrow motivation for using ILC_{650}
- Conclusions

'Gedankenexperiment': NMSSM↔MSSM distinction Start assumptions:

- LHC is running
- LC_{500} is running at the same time

One believes that:

- probably the Higgs sector divides the models because of Higgs singlet Higgs: $S_{1,2,3}$, $P_{1,2}$, $H_{1,2}^{\pm}$ determined by $\tan \beta$, λ , x, κ , A_{λ} , A_{κ}
- gaugino/higgsino sector leaves also unique hints because of the 'singline the Chargino sector \tilde{z}^{\pm} determined by M_{π} , $m = -\lambda m$, tan β
 - * Chargino sector $\tilde{\chi}_{1,2}^{\pm}$ determined by M_2 , $\mu_{eff} = \lambda x$, tan β
 - * Neutralino sector $\tilde{\chi}^0_{1,2,3,4,5}$ determined by M_1 , M_2 , λ , κ , x, tan β

But could it happen, e.g. not assuming SUGRA conditions, that:

- * the Higgs sectors are experimentally not distinguishable?
- * the light neutralino and charginos have same mass spectra in MSSM and NMSSM although rather large singlino admixture?
- * the cross section, BR's also do not point to the right model?
- * the standard parameter strategies do not fail for the light spectrum?

How to proceed in that case?

What has been done so far?

NMSSM:

- Higgs phenomenology Drees'89, Ellwanger'95, 99', 00', '04, Choi'04, Han'04, Gunion'04 et
- Neutralino sector phenomenology Franke'95, Hesselbach'00, '01, Choi'04 et a

$NMSSM \leftrightarrow MSSM$:

• Strategies for the separation of both models: GMP et al.'99 ($\tilde{\chi}_1^0, \tilde{\chi}_2^0$: polarisation effect Choi'et al 02 ($\tilde{\chi}_i^0, i = 1, ..., 4$: application of sumrules

What will be done today?

- light Higgs sector, $\tilde{\chi}^0_i$ and $\tilde{\chi}^\pm_1$ sector similar in both models
- \rightarrow how to get experimental hints which model is fulfilled in nature?
- \rightarrow strategy for combined analyses at LHC \leftrightarrow LC₅₀₀ motivating LC₆₅₀^{$\mathcal{L}=1/3$}!

GMP, Hesselbach, Franke, Fraas'0

Take NMSSM scenario:		M_1	M_2	aneta	λ	x	(μ_{eff})	κ
	NMSSM	360	147	10	0.5	915	(457.5)	0.2

- $\Rightarrow \tilde{\chi}_2^0, \tilde{\chi}_3^0$ strong singlino-like ($\tilde{S} > 40\%$)
- $\Rightarrow M_1 > M_2$ usual in AMSB scenarios; here: general MSSM used
- \Rightarrow $S_1 \sim SM$, S_2 , $P_1 \sim singlet-like (S_1 \rightarrow P_1P_1 \text{ not open})$, $S_3, P_2 > 1 \text{ TeV}$

allowed for large ranges of A_{λ} , A_{κ} , checked/scanned with NMHDECAY!

'Usual' gaugino/higgsino parameter determination

LC analysis at first stage with energy up to $\sqrt{s} = 500$ GeV:

- use only production of $\tilde{\chi}_1^0$, $\tilde{\chi}_2^0$, $\tilde{\chi}_1^+$
- \rightarrow determine the fundamental parameters M_1 , M_2 , μ , $\tan\beta=v_2/v_1$

Choi, Kalinowski, GMP, Zerwas'01

ightarrow prediction for $ilde{\chi}_3^0$, $ilde{\chi}_4^0$, $ilde{\chi}_2^\pm$

Procedure:

- Chargino mixing matrix depends on M_2 , μ , $\tan \beta$ diagonalised via two mixing angles $\cos 2\Phi_L$, $\cos 2\Phi_R$ \rightarrow observables: masses and cross sections (depend also on $m_{\tilde{\nu}}!$)
- Neutralino mixing matrix depends on M_2 , μ , $\tan\beta$ and $M_1 \rightarrow$ observables: masses and cross sections (depend also on $m_{\tilde{e}_L}$, $m_{\tilde{e}_R}$)
- determination of these parameters including estimated errors (no simulation so far)!

Step I: analysis at LC@500 GeV

• taking into account only light particles

	$ ilde{\chi}_1^\pm$	$ ilde{\chi}^\pm_2$	$ ilde{\chi}_1^0$	$ ilde{\chi}^0_2$	$ ilde{\chi}_{ m 3}^{ m 0}$	$ ilde{\chi}_{ t 4}^{ t 0}$	$ ilde{e}_R$	$ ilde{e}_L$	$ ilde{ u}_e$
mass	139	474	138	337	367	468	220	240	226

 \rightarrow accessible at 500 GeV only $\tilde{\chi}^{\pm}_{1}$, $\tilde{\chi}^{0}_{1,2}$, $\tilde{e}_{L,R}$, $\tilde{\nu}$

Assumed mass uncertainties $\sim 1\%$

• $e^+e^- \rightarrow \tilde{\chi}_1^+ \tilde{\chi}_1^-$: $\sigma_{L,R}(\tilde{\chi}_1^+ \tilde{\chi}_1^-) = f(\cos 2\Phi_L, \cos 2\Phi_R, m_{\tilde{\chi}_1^\pm}, m_{\tilde{\nu}_e})$ with polarised beams $P_{e^-} = \pm 80\%$, $P_{e^+} = \mp 60\%$

 $\sqrt{s} = 400 \text{ GeV} \qquad \qquad \sqrt{s} = 500 \text{ GeV}$ $\sigma_L = 984 \pm 51 \text{ fb} \quad \sigma_R = 14 \pm 1 \text{ fb} \quad \sigma_L = 874 \pm 25 \text{ fb} \quad \sigma_R = 12 \pm 1 \text{ fb}$

 \Rightarrow magnitude of errors ($\int \mathcal{L} = 100 \text{ fb}^{-1}$ for each configuration):

$$egin{aligned} &\delta_{stat} & \mbox{up to} &\sim 3\% \ &\delta_{P(e^{\pm})} &\ll & 1\%~(\sigma_L) \ &\mbox{and} < 2\%~(\sigma_R) \ , \ &\mbox{where} \ &\Delta P(e^{\pm})/P(e^{\pm}) = 0.5\% \ &\delta_{m_{\widetilde{\chi}_1^{\pm}}} & \mbox{up to} &\sim 3\% \ &\delta_{m_{\widetilde{\nu}}} &\ll & 1\% \end{aligned}$$

G. Moortgat-Pick (CERN)

Step I: analysis at LC@500 GeV for SPS1a, cont.

• $e^+e^- \rightarrow \tilde{\chi}_1^0 \tilde{\chi}_2^0$: $\sigma_{L,R}(\tilde{\chi}_i^0 \tilde{\chi}_j^0) = f(\cos 2\Phi_L, \cos 2\Phi_R, m_{\tilde{\chi}_1^{\pm}}, m_{\tilde{\chi}_1^0}, m_{\tilde{e}_{L,R}})$ with polarised beams $P_{e^-} = \pm 80\%$, $P_{e^+} = \mp 60\%$

$$\begin{array}{c|c} & \sqrt{s} = 500 \text{ GeV} \\ \tilde{\chi}_1^0 \tilde{\chi}_2^0 & \sigma_L = 12 \pm 1 \text{ fb} & \sigma_R = 0.2 \pm 0.1 \text{ fb} \end{array}$$

• magnitude of errors

dominant uncertainties: statistical error and error due to $m_{\tilde{\chi}_1^{\pm}}$ $\Delta P(e^{\pm})/P$ and $\Delta m_{\tilde{e}_{L,R}} < 1\%$, as before

Neutralino cross sections have low rates ... are they really needed?

In principle: only M_1 needed from neutralino sector Often assumed: M_1 can be derived from $m_{\tilde{\chi}_1^0} \dots$ That is not true!

- masses alone not sufficient, may be insensitive
- ⇒ cross sections needed for unique solution! here: if $m_{\tilde{\chi}_1^0}$ used → $M_1 < -300$ GeV negativ! ⇒ not consistent with cross sections!

Step I: analysis at LC@500 GeV

Results from this analytically based 'fit'-procedure:

ILC ₅₀₀						
M_1	M_2	μ	aneta			
355 ± 15	154 ± 12	500 ± 100	[1, 30]			

- ⇒ take e.g. scenario in the given ranges: M_1 =347 GeV M_2 = 145 GeV μ = 456 GeV tan β =30
- ⇒ Would lead to same masses $\tilde{\chi}_{1,2}^0$, $\tilde{\chi}_1^\pm$ and ~cross sections as before!
- \Rightarrow Is it therefore the right model?

- ⇒ large uncertainty in M_1 and μ , also tan β very weak... ⇒ could happen, since
- only 'gauginos' are accessible

How to find a possible inconsistency?

 \Rightarrow use predicted mass ranges o $\tilde{\chi}^0_{3,4}$, $\tilde{\chi}^\pm_2$ and let them find from LHC or . .

 \Rightarrow all heavier gauginos/higgsinos larger than 390 GeV!

- Could LHC measure the masses and confirm/falsify the model?
- \rightarrow heavy gauginos reconstructed in decay chains e.g. via dilepton edges (strong dependent on $m_{\tilde{\chi}^0_1}!)$ LC input: $m_{\tilde{\chi}^0_1}$ and mass predictions extremely helpful Desch etal'04, Polesello'
- What could be done in this scenario?
- \Rightarrow Since $\tilde{\chi}_3^0 \sim 43\%(\tilde{H}, \tilde{S})$ -like, but $\tilde{\chi}_4^0 > 98\%$ (\tilde{H}, \tilde{S}) -like and even $\tilde{\chi}_5^0 > 93\%$ (\tilde{H}, \tilde{S}) -like
- \rightarrow ILC provides $m_{\tilde{\chi}_1^0}$, $m_{\tilde{\chi}_2^0}$ as input for LHC: $\tilde{\chi}_3^0$ observable in cascades and perhaps – if lucky – also $\tilde{\chi}_5^0$.
- ⇒ we assume that $\delta m_{\tilde{\chi}_3^0}^{LHC} \sim 2\%$: $m_{\tilde{\chi}_3^0} = 367 \pm 7$ GeV from LHC↔ILC! ⇒ obvious contradiction with ILC prediction ($m_{\tilde{\chi}_3^0} > 390$ GeV)!

Motivation for using a further ILC option

- use subsequently higher energy but low luminosity ILC option: $ILC_{650}^{\mathcal{L}=1/2}$
- \rightarrow production cross sections [fb] for heavier $\tilde{\chi}_1^0 \tilde{\chi}_i^0$ pairs and also $\tilde{\chi}_1^{\pm} \tilde{\chi}_2^{\pm}$:

$\sqrt{s} = 650 \text{ GeV}$	$\sigma(e^+e^- ightarrow { ilde \chi}^0_1 { ilde \chi}^0_3)$	$\sigma(e^+e^- ightarrow { ilde\chi}_1^0 { ilde\chi}_4^0)$	$\sigma(e^+e^- \rightarrow \tilde{\chi}^0_1 \tilde{\chi}^0_5)$
unpolarised	12±1	6±0.4	<0.02
$P(e^{-}) = -90\%, P(e^{+}) = +60\%$	37±2	15 ± 1	<0.07
$P(e^{-}) = +90\%, P(e^{+}) = -60\%$	0.6±0.1	2.2±0.3	<0.01

$\sqrt{s} = 650 \text{ GeV}$	$\sigma(e^+e^- ightarrow { ilde\chi_1^\pm} { ilde\chi_2^\mp})$
unpolarised	2.4±0.3
$P(e^{-}) = -90\%, P(e^{+}) = +60\%$	5.8±0.4
$P(e^{-}) = +90\%, P(e^{+}) = -60\%$	1.6±0.2

- \rightarrow only statistical error given based on $\mathcal{L}/3 = 100/3$ fb⁻¹ for each configuration.
- \Rightarrow at least $\tilde{\chi}_3^0$, $\tilde{\chi}_4^0$ and $\tilde{\chi}_2^{\pm}$ accessible!

expected: masses (e.g. $m_{\tilde{\chi}_3^0}$!) and rates precisely measureable

 \Rightarrow With LHC+ILC₆₅₀^{$\mathcal{L}=1/3$}: strong evidence if deviations from MSSM! application of more general fits will probably nail down the NMSSM

Conclusions: Synergy of LHC/ILC in Susy Searches

- Example for new physics searches/determination where simultaneous running of LHC+ILC_[1.stage,500,650] may be decisive!
- Here@ILC₅₀₀ only: measured observables do not point to NMSSM! \rightarrow not obvious that the MSSM is the wrong model!
 - Key points:
 - ILC: analysis of non-coloured light particle sector
 - \rightarrow precise mass of light particles
 - \rightarrow and prediction of heavier states
 - LHC: measurement of light+heavy gauginos
 - \Rightarrow 'Feeding back to ILC analysis'
 - Important consistency tests of the new physics (NP) model already a $\sqrt{s} = 500$ GeV stage! \Rightarrow outline for future search analysis strategies
 - Results of LHC \leftrightarrow ILC₅₀₀ interplay motivates the use of the low luminosity option ILC₆₅₀^{L=1/3}!
 - Future: 'true' fits planned, however NMSSM simulation programs neede

App1:Typical features of the AMSB Susy breaking scenarios

AMSB feature: small mass difference $\delta m_{(\tilde{\chi}_{1}^{\pm}, \tilde{\chi}_{1}^{0})}$ between $\tilde{\chi}_{1}^{0}$ and $\tilde{\chi}_{1}^{\pm}$: \rightarrow tricky scenario for LHC Allanach, 02082 if $\delta m_{(\tilde{\chi}_{1}^{\pm}, \tilde{\chi}_{1}^{0})} < 200$ MeV no problem if 200MeV $< \delta m_{(\tilde{\chi}_{1}^{\pm}, \tilde{\chi}_{1}^{0})} < 2$ GeV: tricky due to softly emitted particles and large background assuming AMSB relations and specific cuts: resolvable Lester' \rightarrow simulation for the LC exist C. Hensel, Thesis, ' $\delta m_{(\tilde{\chi}_{1}^{\pm}, \tilde{\chi}_{1}^{0})}$ measureable at per cent level

 \Rightarrow AMSB scenario may be perfectly suited for combined LHC/LC analyse

Mixing characteristics in the neutralino sector:

- inversion: lightest $\tilde{\chi}_1^0 \sim \tilde{W}$ determined mainly by M_2 $\tilde{\chi}_2^0 \sim \tilde{B}$ determined mainly by M_1
- lightest chargino $\tilde{\chi}_1^{\pm} \sim \tilde{W}$ determined by M_2 (as 'usual') heavy chargino $\tilde{\chi}_2^{\pm} \sim \tilde{H}$ determined by μ ('as usual')

App2: Comparison of MSSM↔NMSSM scenario Masses alone may be not sufficient!

	M_1	M_2	aneta	$\mu \ (\mu_{eff} = \lambda x)$	κ
NMSSM	360	147	10	457.5	0.2
MSSM	347	145	30	456	_

both scenarios respect all exp. bounds!

GMP, Fraas, Franke, Hesselbach'05

\Rightarrow derived mass spectra:

	$ ilde{\chi}_1^\pm$	$ ilde{\chi}^{\pm}_2$	$ ilde{\chi}_1^0$	$ ilde{\chi}^0_2$	$ ilde{\chi}_{ m 3}^{ m 0}$	$ ilde{\chi}_4^0$	$ ilde{\chi}_5^0$
NMSSM	139	474	138	337	367	468	499
MSSM	139	472	139	340	462	475	-

App3: Neutralino cross sections at higher energies

$\sigma(e^+e^- \rightarrow \tilde{\chi}^0_i \tilde{\chi}^0_j)/\text{fb, unpolarised}$	$\sqrt{s} = 800 \text{ GeV}$	$\sqrt{s} = 1000 \text{ GeV}$	$\sqrt{s} = 3000 \text{ GeV}$
$ ilde{\chi}_1^0 ilde{\chi}_2^0 / {\sf fb}$	27.6±0.2	23.6±0.2	4.0±0.06
$ ilde{\chi}_1^0 ilde{\chi}_3^0 / {\sf fb}$	14.9 ± 0.2	$13.1 {\pm} 0.2$	2.2 ± 0.05
$ ilde{\chi}_1^0 ilde{\chi}_4^0 / {\sf fb}$	$6.1 {\pm} 0.1$	$4.4 {\pm} 0.1$	$0.5 {\pm} 0.02$
$ ilde{\chi}_1^0 ilde{\chi}_5^0 / {\sf fb}$	$0.4{\pm}0.03$	$0.5 {\pm} 0.03$	$0.1 {\pm} 0.01$
$ ilde{\chi}_2^0 ilde{\chi}_2^0 / {\sf fb}$	7.2±0.1	$10.6 {\pm} 0.1$	$2.4{\pm}0.05$
$ ilde{\chi}_2^0 ilde{\chi}_3^0 / {\sf fb}$	13.2 ± 0.2	24.0 ± 0.2	$5.5 {\pm} 0.07$
$ ilde{\chi}_2^0 ilde{\chi}_4^0/{ ext{fb}}$	_	$5.7{\pm}0.1$	0.8±0.03
$ ilde{\chi}_2^0 ilde{\chi}_5^0 / {\sf fb}$	_	$1.2 {\pm} 0.05$	$0.4{\pm}0.02$
$ ilde{\chi}^0_3 ilde{\chi}^0_3/ ext{fb}$	6.1±0.1	15.9±0.2	4.0±0.06
$ ilde{\chi}_3^0 ilde{\chi}_4^0/{ m fb}$	_	0.7±0.04	$0.1 {\pm} 0.01$
$ ilde{\chi}^0_3 ilde{\chi}^0_5/{ ext{fb}}$	_	$1.5 {\pm} 0.05$	0.7±0.03
$ ilde{\chi}_4^0 ilde{\chi}_4^0/{ m fb}$	_	0.0	0.0
$ ilde{\chi}_4^0 ilde{\chi}_5^0/{ ext{fb}}$	_	$13.7 {\pm} 0.2$	$4.1 {\pm} 0.06$
$ ilde{\chi}_5^0 ilde{\chi}_5^0/{ m fb}$	_	0.0	0.0

 \Rightarrow Only σ statistical error

 1σ stat. error on basis of $\mathcal{L}_{800,1000} = 500 \text{ fb}^{-1}$ and $\mathcal{L}_{3000} = 1000 \text{ fb}^{-1}$ ($\equiv 1 \times 10^{35} \text{cm}^{-2} \text{s}^{-1}$)