

Supersymmetry Parameter Analysis with Fittino

Philip Bechtle (SLAC) Klaus Desch (Univ. Freiburg) Peter Wienemann (DESY) LCWS 05, Stanford, 19.03.2005

- Motivation and introduction to Fittino
- Parameter determination in Fittino
- Fittino results using ILC and LHC observables
- One more very convincing reason why life without the ILC is very boring
- Conclusions

E Linking Measurements and Theory

Recoil Mass [GeV]

E Linking Measurements and Theory

 $V_{\text{Higgs}} = m_{1H}^2 |H_1|^2 + m_{2H}^2 |H_2|^2$ $-m_{12}^2 (\epsilon_{ij} H_1^i H_2^j + h.c.)$ $+ \frac{1}{8} (g^2 + g'^2) (|H_1|^2 - |H_2|^2)^2 + \frac{1}{2} g^2 |H_1^* H_2|^2$

Philip Bechtle, LCWS 05, 19.03.2005 - p.4

Linking Measurements and Theory

MSSM Physics at the ILC

- Higgs physics:
 - light Higgs mass precision $\approx 50 \,\mathrm{MeV}$
 - light Higgs ${\sf BR} \approx 2\,\%$
 - Discovery of heavy Higgs bosons $> 400 \,\mathrm{GeV}$
- Sleptons: $\Delta m_{\tilde{\mu}_R} = 0.2 \,\mathrm{GeV}$
- Gauginos: $\Delta m_{\chi_1^{\pm}} = 0.5 \, {
 m GeV}$
- Squarks: $\Delta m_{\tilde{t}_1} = 2 \, \mathrm{GeV}$
- + precise analysis of quantum numbers (Higgs parity...)
- + precise analysis of couplings from BR and σ
- indirect prediction of particle masses (LHC/ILC interplay)
- Precision of interpretation has to match precision of measurement

The Fit Program Fittino

- Determine the low-energy MSSM Lagrangian parameters from the observables from the ILC and LHC in a global fit
- Use full theoretical precision, all available loop effects
- Bottom-up approach, no assumption on SUSY breaking mechanism
- To be unbiased: Use no prior knowledge of the parameters at any step
- Provide easy user interface for measurements, parameter definitions and output
- Goals:
 - Unambiguous parameter determination without human bias?
 - Determine precision of parameter measurements
 - Test the necessary experimental and theoretical precision
- More information in http://www-flc.desy.de/fittino/
- Similar Program: SFitter by R. Lafaye, T. Plehn and D. Zerwas

The Iterative Fit Procedure

- Challenge: A χ^2 fit with ≈ 20 parameters probably does not converge without good start values
- Solution: Iterative fit procedure
 - Tree-level estimates of parameters P_i from observables O_j
 - Subsector fits or simulated annealing to approach/find minimal χ^2
 - Global fit to refine minimum and find global parameter uncertainties and correlations
- Additional Features of Fittino:
 - Pulls: Determine χ^2 and pull distributions from toy experiments independent check of uncertainties, biases and correlations
 - Determination of most important observables for each parameter determination
 - 2d scans and uncertainty contours

Simulated Annealing

Variable parameter scan

۲

SUSY

Philip Bechtle, LCWS 05, 19.03.2005 - p.10

The SPS1a' Fit: Inputs

- Observables: for the SPS1a' scenario:
 - SM observables $m_Z, m_W, G_F, m_t, \ldots$
 - Higgs sector masses from 500 GeV and 1 TeV ILC
 - All accessible sparticle and gaugino masses from LHC and ILC with realistic uncertainties (hep-ph/0410364)
 - ILC $\sigma \times BR$ at 400,500,1000 GeV, polarisation LR, RL, LL and RR
 - absolute h BR's and σ (hep-ph/0106315)
- Assumptions for this test:
 - Unification in the first two generations, no complex phases, no squark mixing across flavours
- Two fits:
 - No theory uncertainty
 - Theory uncertainty on all masses and $2 \times$ larger σ uncertainties
- Use SPheno (by W. Porod) as SUSY calculator

ILC+LHC Parameter Measurement

Parameter	"True" value	Fit value	Uncertainty	Uncertainty		
			(exp.)	(exp.+theor.)		
aneta	10.00	10.00	0.11	0.15		
μ	$400.4~{ m GeV}$	$400.4~{ m GeV}$	$1.2~{ m GeV}$	$1.3~{ m GeV}$		
X_{τ}	-4449. GeV	-4449. GeV	20. GeV	30. GeV		
$M_{\tilde{e}_{B}}$	$115.60~{ m GeV}$	$115.60~{ m GeV}$	$0.27~{ m GeV}$	$0.50~{ m GeV}$		
$M_{\tilde{\tau}_B}$	109.89 GeV	109.89 GeV	$0.41~{ m GeV}$	$0.60~{ m GeV}$		
$M_{\tilde{e}_L}$	181.30 GeV	181.30 GeV	$0.10~{ m GeV}$	$0.12~{ m GeV}$		
$M_{\tilde{ au}_L}$	$179.54~{ m GeV}$	$179.54~{ m GeV}$	$0.14~{ m GeV}$	$0.19~{ m GeV}$		
X_t	$-565.7~{ m GeV}$	$-565.7~{ m GeV}$	3.1 GeV	$15.4~{ m GeV}$		
X_{b}	-4935. GeV	-4935. GeV	1284. GeV	1825. GeV		
$M_{\tilde{u}_B}$	503. GeV	503. Ge V	24. GeV	27. GeV		
$M_{\tilde{b}_{R}}$	497. GeV	497. GeV	8. GeV	15. GeV		
$M_{\tilde{t}_{R}}^{\tilde{t}_{R}}$	380.9 GeV	380.9~GeV	$2.5~{ m GeV}$	$3.9~{\rm GeV}$		
$M_{\tilde{u}_L}$	523. GeV	523. GeV	10. GeV	15. GeV		
$M_{\tilde{t}_{I}}$	$467.7 \; \text{GeV}$	467.7~GeV	$3.1~{ m GeV}$	$5.1~{ m GeV}$		
M_1^{L}	103.27 GeV	103.27 GeV	0.06 GeV	$0.14~{ m GeV}$		
M_2	$193.45~{ m GeV}$	$193.45~{ m GeV}$	$0.10~{ m GeV}$	$0.15~{ m GeV}$		
M_3	569. Ge V	569. GeV	7. GeV	7. GeV		
m_{A_run}	312.0~GeV	311.9~GeV	$4.6~{ m GeV}$	$6.9~{ m GeV}$		
m_{t}	178.00 GeV	178.00 GeV	0.050 GeV	0.108 GeV		
	χ^2 for unsmeared observables: $5.3 imes10^{-5}$					

all numbers

Don't read

χ^2 and Toy Fit Distributions

Toy Fits:

M1

E Importance of Observables

Parameter	Total	Observable	Contribution to the
Value	$\Delta \chi^2$		$\Delta\chi^2$ in %
$\tan\beta$	5.0	$\sigma(\mathbf{e}_L^-\mathbf{e}_R^+ \to \mathrm{H}^\pm\mathrm{H}^\mp \to \mathrm{t}\bar{\mathrm{b}}\bar{\mathrm{t}}\mathrm{b}) \ 1 \text{ TeV}$	31.1
10.00 ± 0.11		$\sigma(\mathbf{e}_L^-\mathbf{e}_R^+ \to \mathrm{HA} \to \mathrm{b}\bar{\mathrm{b}}\mathrm{b}\bar{\mathrm{b}}) \ 1 \ \mathrm{TeV}$	9.61
		$m_{ m h}$	8.12
$M_{\tilde{\mathbf{e}}_R}$	27.7	$m_{ ilde{ ext{e}}_R}$	89.3
$115.60\pm0.27~{\rm GeV}$		$m_{ ilde{\mu}_R}$	5.58
		$\sigma(\mathbf{e}_L^-\mathbf{e}_R^+ \to \tilde{\mu}_R^- \tilde{\mu}_L^+ \to \chi_1^0 \mu^- \chi_1^0 \mu^+) \ 400 \ \mathrm{GeV}$	0.74
$M_{ ilde{\mathbf{q}}_R}$	36.6	$m_{ ilde{ ext{e}}_R}$	53.6
$501.6\pm23.6~{\rm GeV}$		$m_{ ilde{\mu}_R}$	3.34
		$\sigma(\mathbf{e}_L^-\mathbf{e}_R^+ \to \tilde{\chi}_1^+ \tilde{\chi}_1^- \to \bar{\nu}_\tau \chi_1^0 \tau^- \nu_\tau \chi_1^0 \tau^+) \ 1 \text{ TeV}$	3.25
		$m_{ ilde{ ext{q}}_R}$	2.42
$\overline{m_{ ext{t}}}$	1.2	$m_{ m t}$	80.7
$178.00\pm0.05~{\rm GeV}$		$m_{ m h}$	18.6
		$\sigma(\mathbf{e}_L^- \mathbf{e}_R^+ \to \tilde{\mathbf{t}}_1^- \tilde{\mathbf{t}}_1^+ \to \chi_1^0 \tau^- \bar{\nu}_\tau \bar{\mathbf{b}} \chi_1^0 \tau^+ \nu_\tau \bar{\mathbf{b}}) \ 1 \text{ TeV}$	/ 0.13

•

•

•

: Comparison of LHC and ILC+LHC

For SPS1a':

Compare the ability of LHC only and ILC+LHC to understand what is discovered:

- Use ILC+LHC inputs and results as before
- For the LHC (considered as LHC friendly assumptions):
 - SM observables as before
 - Mass measurements and precision as in LHC/ILC report hep-ph/0410364
 - + χ_1^+ mass measurement and precision from G. Polesello *et al* hep-ph/0312318
 - Ratios of Higgs branching fractions from M. Dührssen ATLAS Note
- Then plot relative size of uncertainties (RMS of toy fits) and bias (LHC only uncertainties normalized to 1, biases and ILC+LHC uncertainties normalized accordingly)

Comparison of LHC and ILC+LHC

Conclusions

- Fittino measures SUSY Lagrangian parameters using many LHC and ILC observables, taking loop-corrections into account
- Fittino uses tree-level estimates, subspace fits and Simulated Annealing, allows to find the correct parameters in highly complex parameter space
- Lessons from Fittino:
 - Parameter determination is possible (non-trivial!)
 - Precise analysis of SUSY parameters requires high ILC precision
 - Theoretical Uncertainties can strongly affect parameter uncertainties
 - Fittino can be used to identify regions with need of theoretical or experimental improvements
 - Fittino could be used to optimize $\mathcal{L}(\sqrt{s}, \text{pol.})$
- Fittino is available from http://www-flc.desy.de/fittino, see also hep-ph/0412012

Philip Bechtle, LCWS 05, 19.03.2005 - p.17

ILC + LHC can be the era of deeper understanding of new physics

Related Information

Fittino:

http://www-flc.desy.de/fittino/ hep-ph/0412012 (submitted to Comp. Phys. Commun.)

SFitter:

http://sfitter.web.cern.ch/SFITTER/

SPA:

http://spa.desy.de/spa/

SPheno:

http://www-theorie.physik.unizh.ch/~porod/SPheno.html

Results from Fittino:

DESY-THESIS-2004-040

Publication to follow soon

Tree-Level Estimates: Gaugino Sector

- Measure chargino and Neutralino masses
- Use the chargino cross-sections at different beam polarisations to determine the *pseudo*observables $\cos 2\phi_L$, $\cos 2\phi_R$ (Chargino mixing angles) $|\mu| = m_W \left(\Sigma + \Delta (\cos 2\phi_L + \cos 2\phi_R)\right)^{\frac{1}{2}}$ $\tan\beta = \left(\frac{1 + \Delta(\cos 2\phi_R - \cos 2\phi_L)}{1 - \Delta(\cos 2\phi_R - \cos 2\phi_L)}\right)^{\frac{1}{2}}$ $M_2 = m_W \left(\Sigma - \Delta (\cos 2\phi_L + \cos 2\phi_R) \right)^{\frac{1}{2}}$ $M_3 =$ $m_{ ilde{ extbf{g}}}$ $\Sigma = (m^2 + m^2)/2m_W^2 - 1$

$$\Delta = (m_{\chi_2^{\pm}}^2 + m_{\chi_1^{\pm}}^2)/4m_W^2$$
$$\Delta = (m_{\chi_2^{\pm}}^2 - m_{\chi_1^{\pm}}^2)/4m_W^2$$

• Get M_1 from neutralino system

: The Slepton and Squark Sector

- Problem: hard to get 3rd gen. squark mixing on tree-level
- Estimate squark and slepton mass parameters with assumption A = 0:

$$M_{\tilde{t}_{L}} = -m_{Z}^{2} \cos 2\beta (\frac{1}{2} - \frac{2}{3} \sin^{2} \theta_{W}) - m_{t}^{2} + \frac{1}{2} (m_{\tilde{t}_{1}}^{2} + m_{\tilde{t}_{2}}^{2})$$

$$= m_{Z}^{2} \cos 2\beta (\frac{1}{2} - \frac{1}{3} \sin^{2} \theta_{W}) - m_{b}^{2} + \frac{1}{2} (m_{\tilde{b}_{1}}^{2} + m_{\tilde{b}_{2}}^{2})$$

$$M_{\tilde{t}_{R}} = -m_{Z}^{2} \cos 2\beta \frac{2}{3} \sin^{2} \theta_{W} - m_{t}^{2} + \frac{1}{2} (m_{\tilde{t}_{1}}^{2} + m_{\tilde{t}_{2}}^{2})$$

$$M_{\tilde{b}_{R}} = m_{Z}^{2} \cos 2\beta \frac{1}{3} \sin^{2} \theta_{W} - m_{b}^{2} + \frac{1}{2} (m_{\tilde{b}_{1}}^{2} + m_{\tilde{b}_{2}}^{2})$$

$$X_{t} = -\mu/\tan\beta$$

$$X_{b} = -\mu \tan\beta$$

Slepton sector treated analogously

EXAMPLE CONTRACT CONTRACTICA CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACTICA TECRA TECRA TONTRACTICA TECRA TECRATICA TECRATICA

Parameter	"True" value	ILC Fit value	Uncertainty	Uncertainty
			(ILC+LHC)	(LHC only)
aneta	10.00	10.00	0.11	6.7
μ	$400.4~{ m GeV}$	$400.4~{ m GeV}$	$1.2~{ m GeV}$	811. GeV
X_{τ}	$-4449.~{ m GeV}$	-4449. GeV	20. GeV	6368. Ge V
$M_{\tilde{e}_{R}}$	$115.60~{ m GeV}$	$115.60~{ m GeV}$	$0.27~{ m GeV}$	39. GeV
$M_{\tilde{\tau}_{R}}$	$109.89~{ m GeV}$	109.89 GeV	$0.41~{ m GeV}$	1056. GeV
$M_{\tilde{e}_{L}}$	181.30 GeV	181.30 GeV	$0.10~{ m GeV}$	$12.9 \; \mathrm{GeV}$
$M_{\tilde{\tau}_L}$	$179.54~{ m GeV}$	$179.54~{ m GeV}$	$0.14~{ m GeV}$	1369. GeV
X_t	$-565.7~{ m GeV}$	$-565.7~{ m GeV}$	$3.1~{ m GeV}$	548. GeV
X_{b}	-4935. GeV	-4935. GeV	1284. GeV	6703. GeV
$M_{\tilde{u}_B}$	503. Ge V	503. GeV	24. GeV	25. GeV
$M_{\tilde{b}_{R}}^{n}$	497. GeV	497. GeV	8. GeV	1269. GeV
$M_{\tilde{t}_B}^n$	380.9 GeV	380.9~GeV	$2.5~{ m GeV}$	753. GeV
$M_{\tilde{u}_I}$	523. GeV	523. GeV	10. GeV	19. GeV
$M_{\tilde{t}_I}^{L}$	467.7 GeV	467.7~GeV	$3.1~{ m GeV}$	424. GeV
M_1^{L}	$103.27~{ m GeV}$	$103.27~{ m GeV}$	0.06 GeV	8.0 GeV
M_2	$193.45~{ m GeV}$	$193.45~{ m GeV}$	$0.10~{ m GeV}$	132. GeV
M_3	569. GeV	569. GeV	7. GeV	10.1 GeV
$m_{A_{run}}$	312.0~GeV	311.9~GeV	$4.6~{ m GeV}$	1272. GeV
m_{t}	178.00 GeV	178.00 GeV	0.050 GeV	0.27 GeV
χ^2 for unsmeared observables: $5.3 imes 10^{-5}$				

Don't read all numbers!

: LHC only Pull Distributions

EITTINO SUSY

Simulated Annealing

Warning: Partial fits are not reliable

ILC 400 and 500 data only, n.d.f = 75:

Parameter	"True" value	Fit with correctly	Fit with incorrectly	Uncertainty	
		fixed parameters	fixed parameters	-	
		Fixed parameters			
Xt	-565.7 GeV	$-565.7~{ m GeV}$	-30.0 GeV	fixed	
X_{b}	$-4934.8~{ m GeV}$	$-4934.8~{ m GeV}$	$-4000.0~{\rm GeV}$	fixed	
$M_{\tilde{q}_R}$	501.6~GeV	$501.6~{ m GeV}$	600.0 GeV	fixed	
:	:	:	:	:	
M_3	568.9 Ge V	568.9 Ge V	700.0 Ge V	fixed	
$m_{A_{rup}}$	312.0 GeV	312.0~GeV	400.0 GeV	fixed	
m_{t}	178.0 GeV	178.0 GeV	178.0 GeV	fixed	
Additional parameters of fit excluding Higgs sector observables					
aneta	10.00	10.00	11.1	0.47	
μ	$400.39~{ m GeV}$	400.388 GeV	388.3 GeV	$3.1~{\rm GeV}$	
$X_{ au}$	$-4449.2~{ m GeV}$	$-4449.2~{ m GeV}$	$-4447.8~{ m GeV}$	$37.2~{ m GeV}$	
$M_{\tilde{e}_{R}}$	115.60 GeV	115.602 GeV	113.74 GeV	0.06 GeV	
$M_{\tilde{\tau}_{R}}$	109.89 GeV	109.89 GeV	107.77 GeV	$0.48~{ m GeV}$	
$M_{\tilde{e}_{L}}$	181.30 GeV	181.304 GeV	181.76 GeV	$0.04~{ m GeV}$	
$M_{\tilde{ au}_L}$	179.54~GeV	$179.54~{ m GeV}$	179.99 GeV	$0.14~{ m GeV}$	
M_1	103.271 GeV	$103.271~{ m GeV}$	103.11 GeV	$0.05~{ m GeV}$	
M_2	193.446 GeV	$193.445~{ m GeV}$	193.49 GeV	0.12 GeV	
χ^2		1.8×10^{-5}	5.89		

•

•