Topping at the ILC *A Top_{QCD} Review

André H. Hoang

Max-Planck-Institute for Physics Munich

LCWS 05, Stanford, March 18-22 2005

What we (don't) know ...

Tevatron (Run I) (& LEP): $m_{
m top}^{?} = 178 \pm 4.3 \, {
m GeV}$ $B(t \to W_0 b) = 0.91 \pm 0.39$ $B(t \to W_+ b) = 0.11 \pm 0.15$ $B(t \to \gamma q) < 0.032$ $B(t \rightarrow Zq) < 0.33$ $\frac{B(t \to Wb)}{\Sigma_{d,s,b}B(t \to Wq)} = 0.94^{+0.31}_{-0.24}$ $\sigma_{p\bar{p}\rightarrow t\bar{t}} = 6.2 \pm 1.7\,\mathrm{pb}$ Tevatron (Run II): ...

What we (don't) know ...

EWSB:

- \rightarrow just a heavy quark ?
- \rightarrow special role for the top in EWSB ?
- \rightarrow strong constraint on any model
- Higgs mechanism

SM: $m_t = g_{ttH}V$

 $\frac{e^+e^- \rightarrow t\bar{t}H, \sqrt{s} = 800 \text{ GeV}}{\delta g_{\text{tth}}/g_{\text{tth}} = 5 - 6\%} \qquad \mathcal{L} = 10^3 \text{ fb}^{-1}$ $\frac{\delta g_{\text{tth}}}{g_{\text{tth}}} = 10\% \qquad (m_h = 120 \text{ GeV})$ $\frac{\delta g_{\text{tth}}}{g_{\text{tth}}} = 10\% \qquad (m_h = 190 \text{ GeV})$

Gay, Besson, Winter

 $\frac{\sqrt{s} \approx 350 \text{ GeV}}{\delta g_{\text{tth}}/g_{\text{tth}} = 20 - 50 \% \text{ (}m_h = 120 \text{ GeV)}}$ Martinez, Miquel

LCWS 05, Stanford, March 18-22 2005

EWSB:

- \rightarrow just a heavy quark ?
- \rightarrow special role for the top in EWSB ?
- \rightarrow strong constraint on any model
- Higgs mechanism

SUSY:
$$\rightarrow H_1, H_2 \tan \beta = v_2/v_1$$

 $\rightarrow t \rightarrow H^+ b, \tilde{t}\tilde{\chi}$
 \rightarrow squark mixing
 \rightarrow unification (RGE's)
 \rightarrow Higgs masses
 \rightarrow drives SSB (mSUGRA)
 \rightarrow split SUSY
Little Higgs: \rightarrow H = pseudo Goldstone
 \rightarrow heavier Top
 $\rightarrow e^+e^- \rightarrow t\bar{t}H$
 \rightarrow drives SSB

EWSB:

- \rightarrow just a heavy quark ?
- \rightarrow special role for the top in EWSB ?
- \rightarrow strong constraint on any model

• DSB

topcolor (+ technicolor):

- $\rightarrow SU(3)_{3rd} \neq SU(3)_{1st+2nd}$
- \rightarrow broken to $SU(3)_c$
- \rightarrow top condensation

$$\rightarrow t \rightarrow \pi^+ b$$

Anomalous Couplings:

- \rightarrow rare/anomalous/exotic decays
- \rightarrow rare/anomalous/exotic production
- \rightarrow top spin: $\Gamma_t > \Lambda_{\rm QCD}$
- \rightarrow CP-violation

- TC2: FCNC's, $t \rightarrow \pi^+ b$
- SUSY: exotic decays, FCNC's, CP-violation
- Multi-Higgs: exotic decay, CP-violation
- extra dimension: spin observables
- 4th generation: V_{tb} modified
- \implies . . . lots of possibilities vast literature

Example: FCNC's

$\sqrt{s} = 500 \text{ GeV}$	SM	2HDM-III	MSSM	TC2
$\sigma(\gamma\gamma \to t \bar{c})$ [fb]	$\mathcal{O}(10^{-8})$	$\mathcal{O}(10^{-1})$	$\mathcal{O}(10^{-1})$	$\mathcal{O}(10)$
$\sigma(e\gamma \to et\bar{c})$ [fb]	$\mathcal{O}(10^{-9})$	$\mathcal{O}(10^{-2})$	$\mathcal{O}(10^{-2})$	$\mathcal{O}(1)$
$\sigma(e^+e^- \to t\bar{c})[\text{fb}]$	$O(10^{-10})$	$\mathcal{O}(10^{-3})$	$\mathcal{O}(10^{-2})$	$\mathcal{O}(10^{-1})$
$Br(t \rightarrow cg)$	$\mathcal{O}(10^{-11})$	$\mathcal{O}(10^{-5})$	$\mathcal{O}(10^{-5})$	$\mathcal{O}(10^{-4})$
$Br(t \to cZ)$	$\mathcal{O}(10^{-13})$	$\mathcal{O}(10^{-6})$	$\mathcal{O}(10^{-7})$	$\mathcal{O}(10^{-4})$
$Br(t \to c\gamma)$	$O(10^{-13})$	$O(10^{-7})$	$\mathcal{O}(10^{-7})$	$\mathcal{O}(10^{-6})$
$Br(t \to cH)$	$< 10^{-13}$	$\mathcal{O}(10^{-3})$	$\mathcal{O}(10^{-4})$	$\mathcal{O}(10^{-1})$

Yang, hep-ph/0409351

1 fb
$$\Leftrightarrow 10^2 - 10^3$$
 events $(\mathcal{L} = 100 - 1000 \text{ fb}^{-1})$

Example: FCNC's

$\sqrt{s} = 500 \; \mathrm{GeV}$	SM	2HDM-III	MSSM	TC2
$\sigma(\gamma\gamma \to t\bar{c})$ [fb]	$\mathcal{O}(10^{-8})$	$\mathcal{O}(10^{-1})$	$\mathcal{O}(10^{-1})$	$\mathcal{O}(10)$
$\sigma(e\gamma \to et\bar{c})$ [fb]	$\mathcal{O}(10^{-9})$	$\mathcal{O}(10^{-2})$	$\mathcal{O}(10^{-2})$	$\mathcal{O}(1)$
$\sigma(e^+e^- \to t\bar{c})[\text{fb}]$	$O(10^{-10})$	$O(10^{-3})$	$\mathcal{O}(10^{-2})$	$O(10^{-1})$
$Br(t \rightarrow cg)$	$O(10^{-11})$	$O(10^{-5})$	$O(10^{-5})$	$O(10^{-4})$
$Br(t \rightarrow cZ)$	$\mathcal{O}(10^{-13})$	$\mathcal{O}(10^{-6})$	$\mathcal{O}(10^{-7})$	$\mathcal{O}(10^{-4})$
$Br(t \rightarrow c\gamma)$	$O(10^{-13})$	$O(10^{-7})$	$\mathcal{O}(10^{-7})$	$O(10^{-6})$
$Br(t \to cH)$	$< 10^{-13}$	$O(10^{-3})$	$\mathcal{O}(10^{-4})$	$O(10^{-1})$

Experimental capabilities:

Yang, hep-ph/0409351

Aguilar-Saavedra, hep-ph/0409342

• top decay:
$$\sigma(gg \rightarrow t\bar{t})_{\rm LHC} \sim 10^3 \text{ pb}$$

 $\sigma(e^+e^- \rightarrow t\bar{t})_{\rm ILC} \sim 1 \text{ pb}$

 \longrightarrow LHC

competitive & complementary

• single top production (incl. e^{\pm} polarization) \longrightarrow ILC

$$\begin{aligned} & 3\sigma \text{ discovery limits:} \quad t \to qZ \qquad \mathcal{O}(10^{-5}) - \mathcal{O}(10^{-6}) \\ & t \to q\gamma \qquad \mathcal{O}(10^{-6}) \end{aligned}$$

Example: tt-Z, tt-Photon

Comparison: lepton + jets, p_T -distribution (1 σ limits)

talk by U. Baur

coupling	LHC (300 fb $^{-1}$)	e^+e^- (snowmass)
$\Delta \widetilde{F}_{1V}^{\gamma}$	$+0.043 \\ -0.041$	$+0.047 \\ -0.047$, 200 fb $^{-1}$
$\Delta \widetilde{F}_{1A}^{\gamma}$	$+0.051 \\ -0.048$	$^{+0.011}_{-0.011}$, 100 fb $^{-1}$
$\Delta \widetilde{F}_{2V}^{\gamma}$	$+0.038 \\ -0.035$	$^{+0.038}_{-0.038}$, 200 fb $^{-1}$
$\Delta \widetilde{F}_{2A}^{\gamma}$	$+0.16 \\ -0.17$	$^{+0.014}_{-0.014}$, 100 fb $^{-1}$
$\Delta \widetilde{F}^Z_{1V}$	$+0.34 \\ -0.72$	$^{+0.012}_{-0.012}$, 200 fb $^{-1}$
$\Delta \widetilde{F}^Z_{1A}$	$+0.079 \\ -0.091$	$^{+0.013}_{-0.013}$, 100 fb $^{-1}$
$\Delta \widetilde{F}^Z_{2V}$	$+0.26 \\ -0.34$	$^{+0.009}_{-0.009}$, 200 fb $^{-1}$
$\Delta \widetilde{F}^Z_{2A}$	$+0.35 \\ -0.35$	$^{+0.052}_{-0.052}$, 100 fb $^{-1}$

$$\Gamma^{V}_{\mu} = ie \left\{ \gamma_{\mu} \left(\tilde{F}^{V}_{1V} + \gamma_{5} \tilde{F}^{V}_{1A} \right) + \frac{(q-q')_{\mu}}{2m_{t}} \left(\tilde{F}^{V}_{2V} + \gamma_{5} \tilde{F}^{V}_{2A} \right) \right\}$$

	$\mathcal{O}(\%)$	precision	at	ILC
--	-------------------	-----------	----	-----

• polarization crucial: $P(e^-) = 0.8$

LCWS 05, Stanford, March 18-22 2005

Example: tt-Z, tt-Photon

Comparison: lepton + jets, p_T -distribution (1 σ limits)

talk by U. Baur

coupling	LHC (300 fb $^{-1}$)	e^+e^- (snowmass)
$\Delta \widetilde{F}_{1V}^{\gamma}$	$+0.043 \\ -0.041$	$+0.047 \\ -0.047$, 200 fb $^{-1}$
$\Delta \widetilde{F}_{1A}^{\gamma}$	$+0.051 \\ -0.048$	$^{+0.011}_{-0.011}$, 100 fb $^{-1}$
$\Delta \widetilde{F}_{2V}^{\gamma}$	$+0.038 \\ -0.035$	$^{+0.038}_{-0.038}$, 200 fb $^{-1}$
$\Delta \widetilde{F}_{2A}^{\gamma}$	$+0.16 \\ -0.17$	$^{+0.014}_{-0.014}$, 100 fb $^{-1}$
$\Delta \widetilde{F}^Z_{1V}$	$+0.34 \\ -0.72$	$^{+0.012}_{-0.012}$, 200 fb $^{-1}$
$\Delta \widetilde{F}^Z_{1A}$	$+0.079 \\ -0.091$	$^{+0.013}_{-0.013}$, 100 fb $^{-1}$
$\Delta \widetilde{F}^Z_{2V}$	$+0.26 \\ -0.34$	$^{+0.009}_{-0.009}$, 200 fb $^{-1}$
$\Delta \widetilde{F}^Z_{2A}$	$+0.35 \\ -0.35$	$^{+0.052}_{-0.052}$, 100 fb $^{-1}$

$$\begin{split} \Gamma^V_\mu &= ie \left\{ \gamma_\mu \left(\tilde{F}^V_{1V} + \gamma_5 \tilde{F}^V_{1A} \right) \right. \\ &+ \frac{(q-q')_\mu}{2m_t} \left(\tilde{F}^V_{2V} + \gamma_5 \tilde{F}^V_{2A} \right) \right\} \end{split}$$

•	$\mathcal{O}(\%)$	precision	at	ILC
---	-------------------	-----------	----	-----

• polarization crucial: $P(e^-) = 0.8$

General needs:

- \rightarrow coherent conventions
- \rightarrow fully exploit of polarization
- \rightarrow vary more than 1 coupling
- \rightarrow optimized observables
- \rightarrow QCD corrections

LCWS 05, Stanford, March 18-22 2005

Top = pQCD laboratory:

Total Cross Sections (e^+e^-) :

 $\sigma(t\bar{t})$, continuum: $\mathcal{O}(\alpha_s^2)$, 1-loop ew. 2-loop Sudakovs

 $\sigma(t\bar{t}),$ threshold: NNLL QCD (\checkmark), (N)LL ew. \checkmark

 $\sigma(t\bar{t}H): \mathcal{O}(\alpha_s) \checkmark, \text{ 1-loop ew. }\checkmark$ $t\bar{t} \text{ threshold effects }\checkmark \text{ talk by Hoang}$

Spin Correlations & Distributions (e^+e^-):

 $\sigma(t\bar{t})$: $\mathcal{O}(\alpha_s)$ \checkmark

<u>Need:</u> (~ $10^6 t\bar{t}$ events)

$$\star~e^+e^-
ightarrow 6f$$
 (Lusifer) $ightarrow {\cal O}(lpha_s)$

$$\star \ e^+e^- \to 8f \qquad \qquad \to \mathcal{O}(\alpha_s)$$

- ★ unstable particles
- non-factorizable corrections

Top Mass Measurement

Why $\delta m_t \sim 100$ MeV is useful:

 \rightarrow S.Heinemeyer

★ ew. precision observables

 $\delta m_t \lesssim 0.2 \; \mathrm{GeV} \leftrightarrow (\delta M_w)^{\mathrm{GIGA}-\mathrm{Z}}$

 $\delta m_t \lesssim 0.5 \; \mathrm{GeV} \leftrightarrow (\sin^2 \theta_{\mathrm{eff}})^{\mathrm{GIGA}-\mathrm{Z}}$

★ lightest MSSM Higgs mass

$$m_h^2 \simeq M_z^2 + G_F m_t^4 \ln\left(\frac{M_{\text{susy}}}{m_t}\right)$$
$$\Rightarrow \delta m_h \sim \delta m_t$$

★ mSUGRA:

- \rightarrow constrains high scale parameters
- \rightarrow constrains cold dark matter candidates

<u>Threshold Scan:</u> $\sqrt{s} \simeq 350$ GeV (Phase I)

- \triangleright count number of $t\bar{t}$ events
- color singlet state
- background is non-resonant
- physics quite well understood
 - (renormalons, summations)

 $ightarrow \delta m_t^{
m exp} \simeq 50 \; {
m MeV}$

 $\mathcal{L} = 300 \, \mathrm{fb}^{-1}$ 9 + 1 scan points [Peralta, Martinez]

<u>Threshold Scan:</u> $\sqrt{s} \simeq 350$ GeV (Phase I)

- \triangleright count number of $t\bar{t}$ events
- color singlet state
- background is non-resonant
- physics quite well understood
 - (renormalons, summations)

 $\begin{array}{l} \rightarrow \delta m_t^{\mathrm{exp}} \simeq 50 \; \mathrm{MeV} \\ \rightarrow \delta m_t^{\mathrm{th}} \simeq 100 \; \mathrm{MeV} \\ \mathrm{(param. \; est. \; \rightarrow \; many \; authors)} \\ \\ \hline \\ \hline \\ \frac{\mathrm{What \; mass?}}{\sqrt{s_{\mathrm{rise}}}} \sim 2m_t^{\mathrm{thr}} + \mathrm{pert. series} \\ \mathrm{(short \; distance \; mass: \; 1S \; \leftrightarrow \; \overline{\mathrm{MS}})} \end{array}$

<u>Threshold Scan:</u> $\sqrt{s} \simeq 350$ GeV (Phase I)

- \triangleright count number of $t\bar{t}$ events
- color singlet state
- background is non-resonant
- physics quite well understood (renormalons, summations)

ongoing work:

 $\begin{array}{l} \rightarrow \delta m_t^{\mathrm{exp}} \simeq 50 \ \mathrm{MeV} \\ \rightarrow \delta m_t^{\mathrm{th}} \simeq 100 \ \mathrm{MeV} \\ \mathrm{(param.\ est.\ } \rightarrow \mathrm{many\ authors)} \\ \end{array} \\ \\ \frac{\mathrm{What\ mass?}}{\sqrt{s_{\mathrm{rise}}}} \sim 2m_t^{\mathrm{thr}} + \mathrm{pert.series} \\ \mathrm{(short\ distance\ mass:\ 1S \leftrightarrow \overline{\mathrm{MS}})} \end{array}$

 \rightarrow S. Boogert

 \rightarrow A. Hoang

 \rightarrow M. Steinhauser

- effects from lumi spectrum measurements: $\Delta m_t \sim -50 \text{ MeV}$
- higher order corrections
 - ▷ NNLL finite lifetime corrections: $\Delta m_t = +(30 50)$ MeV
 - $\triangleright \mathcal{O}(\alpha_s^3)$ fixed-order Coulomb corrections
- <u>needed:</u> \triangleright full NNLL order \leftrightarrow full NNNLO fixed order
 - Full NNLL electroweak corrections
 - Fully differential (unstable top quark)

<u>Threshold Scan:</u> $\sqrt{s} \simeq 350$ GeV (Phase I)

 \triangleright count number of $t\bar{t}$ events color singlet state 0.6 background is non-resonant 0.4 physics quite well understood 0.2 (renormalons, summations)

 $\rightarrow \delta m_t^{
m exp} \simeq 50 \ {
m MeV}$ $\rightarrow \delta m_t^{\mathrm{th}} \simeq 100 \ \mathrm{MeV}$ (param. est. \rightarrow many authors) What mass? $\sqrt{s}_{\rm rise} \sim 2m_t^{\rm thr} + {\rm pert.series}$ (short distance mass: $1S \leftrightarrow \overline{MS}$)

<u>Reconstruction:</u> any \sqrt{s} (Phase I + II) Chekanov, Morgunov: $\triangleright e^+e^- \rightarrow 6$ jets (y_{cut}^6) ▷ b-tagging $\triangleright \vec{P}_1 + \vec{P}_2 < \Delta_p$ $\triangleright M_1 + M_2 < \Delta_M$

 $\rightarrow \delta m_t^{\mathrm{ex,stat}} \simeq 100 \ \mathrm{MeV}$ $(\mathcal{L} = 300 \, \text{fb}^{-1})$

LCWS 05, Stanford, March 18-22 2005

Threshold Scan: $\sqrt{s} \simeq 350 \text{ GeV}$ (Phase I)

- \triangleright count number of $t\bar{t}$ events
- color singlet state
- background is non-resonant
- physics quite well understood (renormalons, summations)

 $\rightarrow \delta m_t^{
m exp} \simeq 50 \ {
m MeV}$ $\rightarrow \delta m_t^{\mathrm{th}} \simeq 100 \ \mathrm{MeV}$ (param. est. \rightarrow many authors) What mass? $\sqrt{s}_{
m rise} \sim 2m_t^{
m thr} + {
m pert.series}$ (short distance mass: $1S \leftrightarrow \overline{MS}$)

Reconstruction: any \sqrt{s} (Phase I + II) Chekanov, Morgunov: $\triangleright e^+e^- \rightarrow 6$ jets (y_{cut}^6) ▷ b-tagging $\triangleright \vec{P}_1 + \vec{P}_2 < \Delta_p$ $\triangleright M_1 + M_2 < \Delta_M$

 $\rightarrow \delta m_t^{\mathrm{ex,stat}} \simeq 100 \ \mathrm{MeV}$ $(\mathcal{L} = 300 \, \text{fb}^{-1})$

What mass?

Pole Mass? ambiguity: $\Delta m_t \sim \Lambda_{\rm QCD}$

<u>Threshold Scan:</u> $\sqrt{s} \simeq 350$ GeV (Phase I)

- ▷ count number of $t\bar{t}$ events
 ▷ color singlet state
- background is non-resonant
- physics quite well understood (renormalons, summations)

 $\begin{array}{l} \rightarrow \delta m_t^{\mathrm{exp}} \simeq 50 \; \mathrm{MeV} \\ \rightarrow \delta m_t^{\mathrm{th}} \simeq 100 \; \mathrm{MeV} \\ \mathrm{(param. \; est. \; \rightarrow \; many \; authors)} \\ \\ \hline \\ \hline \\ \frac{\mathrm{What \; mass?}}{\sqrt{s_{\mathrm{rise}}}} \sim 2m_t^{\mathrm{thr}} + \mathrm{pert.series} \\ \mathrm{(short \; distance \; mass: \; 1S \; \leftrightarrow \; \overline{\mathrm{MS}})} \end{array}$

<u>Reconstruction:</u> any \sqrt{s} (Phase I + II) <u>Chekanov,Morgunov:</u>

▷ $e^+e^- \rightarrow 6$ jets (y_{cut}^6) ▷ b-tagging ▷ $\vec{P_1} + \vec{P_2} < \Delta_p$

 $\triangleright M_1 + M_2 < \Delta_M$

 $ightarrow \delta m_t^{
m ex,stat} \simeq 100 \; {
m MeV}$ (${\cal L} = 300 \, {
m fb}^{-1}$)

What mass?

Pole Mass ? ambiguity: $\Delta m_t \sim \Lambda_{\rm QCD}$ $\Delta m_t \sim \alpha_s(\Gamma_t) \Gamma_t$

There is s.th. to understand here !

LCWS 05, Stanford, March 18-22 2005

Final Words

... there is plenty of interesting top physics to work on !

There are no free lunches here !

... let's get started !

