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Simulator for the Linear Collider (SLIC) and Linear Collider Detector Description (LCDD) provide a flexible and powerful 

package for full detector simulations.  This paper outlines the main features of SLIC and LCDD and explains the structure of an 

LCDD document used for detector description input.  

1. OVERVIEW 

The Simulator for the Linear Collider (SLIC) [1] is a full simulations package for Linear Collider Detector studies 

developed by Jeremy McCormick (SLAC), with contributions from Ron Cassell (SLAC).  The software is being used to 

study the physics response of ILC full detector designs, including the Silicon Detector (SiD) [2] and a number of its 

variants. 

SLIC is a “hub” package that integrates nine, different physics software libraries into a single program.  It reads 

StdHep [3] physics events, simulates them in a detector, and produces Linear Collider IO (LCIO) [4] output files.  

These can be analyzed using the Java-based org.lcsim [5] analysis and reconstruction framework.   

The detector description, along with related information such as readouts, is described completely at runtime using an 

Extensible Markup Language (XML) [6] document conforming to the Linear Collider Detector Description (LCDD) [7] 

format.  (The term LCDD refers both to the XML data format representing the detector, and the package that parses this 

format for input into the simulation runtime.)  The LCDD subsystem is designed for maximum flexibility, while 

removing any requirement on the end user to author or modify C++ code when customizing the detector parameters. 

2. LCDD 

Loading the detector description into the runtime environment is typically the most complex part of a Geant4 [8] 

simulator package.  The LCDD package deals with the specification of detector attributes, while SLIC contains the 

“command and control” engine.  The LCDD data format covers the areas of geometry, materials, constants, readout, 

visualization, magnetic fields, tracking and stepping limits, and identifier definition.  Various types of detectors, 

including test beams and full detectors, are fully describable using the LCDD XML format.   

LCDD is built upon the Geometry Description Markup Language (GDML) [9] toolkit, whose primary author is 

Radovan Chytracek (CERN/LCG).  GDML covers the core geometry of solids within a nested volume hierarchy.  It 

also has facilities for defining materials and constants.  GDML’s SAX [10] parser can process a 15,000-line LCDD 

document in approximately 1.5 seconds on a Pentium III.  LCDD uses this engine and benefits from its high 

performance. 

The input to the LCDD system is an XML document representing the detector and its readouts, plus associated 

metadata.  This document must conform to the XML Schema (XSD) [11] that defines the LCDD data format.  The 

XML is read by SLIC, using the LCDD sub-package, to construct the complete Geant4 detector geometry, along with 
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the sub-detector readouts (called “sensitive detectors” in Geant4 terminology).  LCDD also sets-up related objects that 

represent regions, sets of physics limits, visualization attributes, and magnetic fields. 

The LCDD XML schema contains the GDML format as a subschema, importing the complete GDML geometry 

model into LCDD.  This approach allows for extension and alteration of GDML, while keeping the core model of 

constants, materials, solids and volumes.  LCDD only extends GDML by adding elements to the GDML that reference 

the LCDD.  Thus, any GDML parser should be able to read the GDML data from an LCDD document simply by 

ignoring these extra tags.  The extracted GDML could also be altered to conform to the GDML schema simply by 

removing these additional tags. 

2.1. LCDD Data Format 

An LCDD document is contained within the lcdd tag, the root element of the document.  Other top-level elements 

have their own subschema encapsulating the data model for that concept.  For instance, the header element contains 

metadata about the detector, like the name of the author and the detector’s unique tag (e.g. “sdjan03”). 

The structure of a document is outlined by this fragment of pseudo-XML.  

<lcdd> 

    <header>     

    <iddict> 

    <sensitive_detectors> 

    <limits> 

    <regions> 

    <display> 

    <gdml> 

    <fields> 

</lcdd> 

The header contains metadata about this detector, such as its unique tag and author.  This element is used for writing 

out the detector’s unique tag into the LCIO output file. 

The iddict specifies the contents of the 64-bit IDs written into the LCIO output file.  A sensitive detector references 

an idspec that describes the fields to be included in the ID.  These may include Geant4 volume numbers, physical 

volume identifiers, or bin numbers from a segmentation scheme. 

The sensitive_detectors element contains a tracker or calorimeter element for each detector subsystem, such as a 

calorimeter barrel or vertex detector.  (Calorimeters and trackers are the two basic types of subdetectors.)  Both types of 

sensitive detectors can be customized using various attributes.  The calorimeter sensitive detector needs to have a 

segmentation tag, such as a projective cylinder or Cartesian grid, which defines the virtual segmentation for that 

volume. 

Limits on steps and tracks can be assigned using the limits block.  A volume within the GDML element can reference 

a limitset in order to customize the physics response in that area.  For instance, the production of secondary gammas 

could be suppressed by assigning a very large minimum to the tracking range cut for gamma particles.  
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The regions element can be used to specify groups of volumes with similar characteristics, such as whether or not 

secondary particles within the volume should be written into the LCIO output file.  

Visualization attributes can be assigned using the display element.  All options in the G4VisAttributes class are 

available using the vis element.  These include toggling volume visibility and daughter volume visibility, line style, 

wireframe or solid drawing style, and the color. 

The fields area defines one or more magnetic fields.  A global solenoid is currently the only option.   

The gdml tag contains an embedded GDML document with LCDD extension tags on the volume element.  The 

extension tags are like references or pointers that assign an LCDD element to the volume. 

This is an example of the extended GDML volume element. 

<volume name="ecal_barr"> 

  <materialref ref="Air" /> 

  <solidref ref="ecal_barr_tube" /> 

  <physvol> 

    <volumeref ref="ecal_barr_lay0" /> 

    <positionref ref="identity_pos" /> 

    <rotationref ref="identity_rot" /> 

  </physvol> 

  <sdref          ref=“EcalSD” /> 

  <regionref   ref="EcalRegion" /> 

  <visref         ref="EcalVis"/> 

  <limitsetref ref=”EcalLimits”/> 

</volume>   

The items in bold are LCDD extensions to the GDML format.  The aforementioned LCDD tags are referenced from 

the volume, in order to setup a G4LogicalVolume with supplementary Geant4 objects: G4SensitiveDetector, G4Region, 

G4VisAttributes and G4UserLimits.  In this way, LCDD is able to interface with GDML while preserving that format’s 

structure.   

3. MONTE CARLO PARTICLE HANDLING 

The handling of secondary particles is typically a key portion of a Geant4 full simulator.  All of the tracking objects 

defined by Geant4 are transient with the event, so a simulator must create the particle tree and write it into the output 

file if this information is to be utilized in reconstruction and analysis.  SLIC’s Monte Carlo particle handling is based on 

that of the Linear Collider Simulator [12] package by Ron Cassell.  It uses custom implementations of 

G4VUserTrackInformation and G4VTrajectory to store the tracking information until the end of the event.  The LCIO 

Monte Carlo particle tree is constructed after the event is simulated in the EndEventAction using information from 

these two objects, along with the G4PrimaryParticles and the initial particle tree read from the StdHep event file.  

Throughout this process, track ID is used as the primary unique identifier.  SLIC also has the (unique) capability of 

reading-in and simulating events from the MCParticle collection of an LCIO file.  This allows events written-out from 

other simulators to be simulated using SLIC.   
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4. COMMANDS 

Each of SLIC’s command-line switches activates a single Geant4 command.  Most of these are commands that 

have been added specifically for SLIC.  For instance, the “-i” switch executes the “/generator/filename” command.  In 

this way, the interface is kept consistent between the command-line and macros or an interactive session.  The 

command set has been designed with flexibility and convenience in mind.  For instance, SLIC can automatically name 

the LCIO output file according to the geometry and input file parameters with the “/lcio/autoname” command.      

5. PLANS 

For the Snowmass 2005 Workshop [13], SLIC will be used to produce approximately 1 million physics events 

on a variety of different detector configurations.  Each of ten detectors will have about 100,000 simulated events.  Using 

these datasets, researchers will be able to compare the simulated response of different readout technologies and 

benchmark their analysis and reconstruction code, including Particle Flow Algorithms.   

6. EXAMPLE GEOMETRIES 

6.1. MDI-BDS 

 

6.2. sidaug05  
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