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In the general two–Higgs–doublet model, including the minimal supersymmetric standard model (MSSM) as its specific

realization, the two heavy neutral Higgs bosons are nearly degenerate in the decoupling limit. If the theory is CP–

noninvariant, the mixing between the heavy states can strongly be affected by the decay widths. We develop the

formalism describing this CP–violating non–hermitian mixing and provide some interesting experimental signatures

of the CP–violating mixing at a γγ collider with polarized beams in the context of the CP–noninvariant MSSM.

1. INTRODUCTION

The MSSM is a specific realization of general scenarios that include two doublet fields in the Higgs sector. After

three Goldstone fields are absorbed by electroweak gauge bosons, the remaining five fields give rise to physical states.

At the tree level, the MSSM Higgs sector is CP invariant, with two CP–even and one CP–odd neutral states. However,

the MSSM offers new sources of CP violation, which render the Higgs sector CP–noninvariant at the loop level. In

such CP–noninvariant theories the three neutral states mix to form a triplet with both even and odd components

in the wave–functions under CP transformations [1–3]. The mixing can become very large if the states are nearly

mass–degenerate. This situation is naturally realized for supersymmetric theories in the decoupling limit [4] in which

two of the neutral states are heavy.

In the present report we describe a simple quantum mechanical (QM) formalism for the CP–violating resonant

H/A mixing in the decoupling limit and then discuss some experimental signatures of the CP–violating mixing in

Higgs production and decay processes at a photon collider with polarized photon beams.

2. MIXING FORMALISM

The self-interaction of two Higgs doublets in a CP–noninvariant theory is generally described by the potential [4]
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where Φ1,2 denote two complex Y = 1, SU(2)L iso-doublet scalar fields. The coefficients are in general all non–zero.

The parameters m2
12, λ5,6,7 can be complex, incorporating the CP-noninvariant elements in the interactions. The

neutral components of the scalar fields Φ1 and Φ2 are assumed to develop non–zero vacuum expectation values

(vevs) 〈φ0
1〉 = v1/

√
2 and 〈φ0

2〉 = v2/
√

2, which can be chosen real and positive without loss of generality. As usual,

v = (v2
1 + v2

2)
1/2 = 246 GeV.

It is useful to rotate the Higgs fields Φ1,2 to the Φa,b basis with the angle β satisfying tanβ = v2/v1 (we exploit

the abbreviations tβ = tan β, cβ = cos β, s2β = sin 2β etc.). In this basis only the field Φa develops a non–zero vev

Φa =

(
G+

1√
2

(
v + Ha + iG0

)
)

, Φb =

(
H+

1√2
(Hb + iA)

)
(2)
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and the three fields G±,0 can be identified as the would-be Goldstone bosons, while H±,Ha,b and A give rise to

physical Higgs bosons. The real mass matrix M2
0 of neutral Higgs fields in the basis of Ha,Hb, A, which is hermitian

and symmetric by CPT invariance, can easily be derived from the Higgs potential (1) after the rotations:

M2
0R = v2




λ −λ̂ −λ̂p

−λ̂ λ − λA + M2
A/v2 −λp

−λ̂p −λp M2
A/v2


 (3)

after eliminating m2
11,22,m

2I
12 from the minimization conditions, and exchanging m2R

12 for the auxiliary parameter M2
A.

It is defined by the relation

m2R
12 = 1

2
(M2

As2β + v2(λR
5 s2β + λR

6 c2
β + λR

7 s2
β)) (4)

and it will be one of the key parameters in the system. The λ, λ̂ and λA parameters are functions of the real parts,

while λp and λ̂p are functions of the imaginary parts of the parameters λi in Eq. (1); their explicit form can be found

in Ref. [5].

In a CP–invariant theory all λi couplings are real and the off–diagonal elements λp, λ̂p vanish. Thus the neutral

mass matrix breaks into the CP–even 2 × 2 part, and the [stand–alone] CP–odd part. The 2 × 2 part gives rise to

two CP–even neutral mass eigenstates h and H, while MA is identified as the mass of the CP–odd Higgs boson A. In

the CP–violating case, however, all three states mix leading to H1,2,3 mass eigenstates with no definite CP parities.

For small mass differences, the mixing of the states is strongly affected by their widths. This is a well–known

phenomenon for resonant mixing [6] and has also been recognized for the Higgs sector [7]. The hermitian mass

matrix (3) has therefore to be supplemented by the anti–hermitian part −iMΓ incorporating the decay matrix [8]

M2 = M2
0 − iMΓ (5)

This matrix includes the widths of the Higgs states in the diagonal elements as well as the transition elements within

any combination of pairs. They are particularly important in the case of nearly mass–degenerate states. All these

elements (MΓ)AB
ab are built up by loops of the fields (AB) in the self-energy matrix 〈hahb〉 of the Higgs fields.

In general, the light Higgs boson, the fermions and electroweak gauge bosons, and in supersymmetric theories,

gauginos, higgsinos and scalar states may contribute to the loops in the propagator matrix. In the physically

interesting case of decoupling, the mixing structure simplifies considerably allowing for a very simple and transparent

approach [5]. Alternative approach requires a full coupled–channel analysis [9].

2.1. Decoupling Limit

The decoupling limit [4] is defined by the inequality M2
A ≫ |λi| v2 with |λi| <∼ O(1). In this limit the Ha state

becomes the CP–even light Higgs boson h and decouples from Hb and A. The heavy states H = Hb and A are nearly

mass degenerate, which turns out to be crucial for large mixing effects between H and A. It is therefore enough to

consider a lower–right 2 × 2 submatrix of the matrix (3) for the heavy H/A states which we write as follows

M2
HA =

(
M2

H − iMHΓH ∆2
HA

∆2
HA M2

A − iMAΓA

)
(6)

where ∆2
HA also consists of a real dissipative part and an imaginary absorptive part. Moreover, the couplings

of the heavy Higgs bosons to gauge bosons and their supersymmetric partners are suppressed. In the case of all

supersymmetric particle contributions to be suppressed either by couplings or by phase space in MΓ, it is sufficient

to consider only loops built up by the light Higgs boson and top quark; for the explicit form of the light Higgs boson

and top quark loop contributions to the matrix MΓ, we refer to Ref. [5]. The loops also contribute to the real part

of the mass matrix, either renormalizing the λ parameters of the Higgs potential or generating such parameters if

not present yet at the tree level.
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2.2. Physical Masses and States

The symmetric complex mass–squared matrix M2 in Eq.(6) can be diagonalized through a complex rotation

M2
HiHj

=

(
M2

H2
− iMH2

ΓH2
0

0 M2
H3

− iMH3
ΓH3

)
= CM2

HAC−1 (7)

where the mixing matrix and the mixing angle are given by

C =

(
cos θ sin θ

− sin θ cos θ

)
, X =

1

2
tan 2θ =

∆2
HA

M2
H − M2

A − i [MHΓH − MAΓA]
(8)

A non–vanishing (complex) mixing parameter X 6= 0 requires CP–violating transitions between H and A either in

the real mass matrix, λp 6= 0, or in the decay mass matrix, (MΓ)HA 6= 0, [or both]. However, note that even for

nearly degenerate masses, the mixing could be suppressed if the widths were significantly different. As a result, the

mixing phenomena are strongly affected by the form of the decay matrix MΓ. Since the difference of the widths

enters through the denominator in X, the modulus |X| becomes large for small differences and small widths.

The mixing shifts the Higgs masses and widths in a characteristic pattern [6]. The two complex mass values after

and before diagonalization are related by the complex mixing angle θ:

M2
H3

− M2
H2

− i (MH3
ΓH3

− MH2
ΓH2

) =
[
M2

A − M2
H − i(MAΓ − MHΓH)

]
×

√
1 + 4X2 (9)

Since the eigenstates of the complex, non–hermitian matrix M2 are no longer orthogonal, the ket and bra mass

eigenstates have to be defined separately: |Hi〉 = Ciα|Hα〉 and 〈H̃i| = Ciα〈Hα| (i = 2, 3 and Hα = H,A). The final

state F in heavy Higgs formation from the initial state I is, then, described with the amplitude

〈F |H|I〉 =
∑

i=2,3

〈F |Hi〉
1

s − M2
Hi

+ iMHi
ΓHi

〈H̃i|I〉 (10)

where the sum runs only over diagonal transitions in the mass–eigenstate basis.

3. EXPERIMENTAL SIGNATURES

To illustrate the general QM results in a realistic example, we adopt a specific MSSM scenario with the source

of CP–violation localized in the complex trilinear coupling At of the soft supersymmetry breaking part involving

the top squark.1 All other interactions are assumed to be CP–conserving. For φA 6= 0, π, the stop–loop corrections

induce the CP–violation in the effective Higgs potential (1). The effective λi parameters have been calculated in

Ref. [3] to two–loop accuracy; to illustrate the crucial points we take the dominant one–loop t/t̃ contributions.

More specifically, we take a typical set of parameters from Ref. [11],

MS = 0.5 TeV, |At| = 1.0 TeV, µ = 1.0 TeV; tanβ = 5 (11)

and change the phase φA of the trilinear parameter At. With φA = 0 we find the following values of the light and

heavy Higgs masses and decay widths, and the stop masses:

Mh = 129.6GeV, MH = 500.3GeV, MA = 500.0GeV; ΓH = 1.2GeV, ΓA = 1.5GeV; mt̃1/2
= 372/647GeV (12)

Clearly, with the mass splitting of 0.3 GeV, the heavy Higgs states are not distinguishable. When the phase φA is

1This assignment is compatible with the bounds on CP–violating SUSY phases from experiments on electric dipole moments [10].
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Figure 1: The φA dependence of (a) the mixing parameter X and of the shifts of (b) masses and (c) widths with the phase

φA evolving from 0 to π for tan β = 5, MA = 0.5 TeV and couplings as specified in the text; in (b,c) the mass and width

differences without mixing are shown by the broken lines. ℜe/ℑmX(2π − φA) = +ℜe/−ℑmX(φA) for angles above π.

turned on,2 the CP composition, the masses and the decay widths of heavy states are strongly affected, as shown in

Figs. 1(a), (b) and (c), while the mass of the light Higgs boson h is not. The heavy two–state system shows a very

sharp resonant CP–violating mixing, purely imaginary a little above φA = 3π/4, Fig. 1(a). The mass shift is enhanced

by more than an order of magnitude if the CP–violating phase rises to non-zero values, reaching a maximal value

of ∼ 5.3 GeV; the width shift changes between −0.3 and +0.4 GeV. As a result, the two mass–eigenstates should

become clearly distinguishable at future colliders, in particular at a photon collider [12]. Moreover, both states

have significant admixtures of CP–even and CP–odd components in the wave–functions. Since γγ colliders offer

unique conditions for probing the CP–mixing [13–15], we discuss two experimental examples: (a) Higgs formation in

polarized γγ collisions and (b) polarization of top quarks in Higgs decays, where spectacular signatures of resonant

mixing can be expected.

(a) The amplitude of the reaction γγ → Hi → F is a superposition of H2 and H3 exchanges. For equal helicities

λ = ±1 of the two photons, the amplitude reads

MF
λ =

∑

i=2,3

〈F |Hi〉
1

s − M2
Hi

+ iMHi
ΓHi

[Sγ
i (s) + iλP γ

i (s)] (13)

where
√

s is the γγ energy and the loop–induced γγHi scalar and pseudoscalar form factors, Sγ
i (s) and P γ

i (s), are

related to the well–known conventional γγH/A form factors, Sγ
H,A and P γ

H,A. For their relation and explicit form

we refer to Refs. [5] and [11]. In our scenario the Higgs–tt couplings are assumed to be CP–conserving, implying

negligible top-loop contributions to P γ
H and Sγ

A since the gluino mass is sufficiently heavy compared with the stop

masses, while the t̃1 loop generates a non-negligible CP-violating amplitude Sγ
A. In the region of strong mixing on

which we focus, however, the CP-violating vertex corrections have only a small effect on the experimental asymmetries

compared with the large impact of CP-violating Higgs-boson mixing.

Polarized photons provide a very powerful tool to investigate the CP properties of Higgs bosons. With linearly

polarized photons one can project out the CP–even and CP–odd components of the Hi wave–functions by arranging

the photon polarization vectors to be parallel or perpendicular. On the other hand, circular polarization provides us

with a direct insight into the CP-violating nature of Higgs bosons. Two asymmetries are of interest

Alin =
σ‖ − σ⊥
σ‖ + σ⊥

, Ahel =
σ++ − σ−−
σ++ + σ−−

(14)

where σ‖, σ⊥ and σ++, σ−− are the corresponding total γγ fusion cross sections for linear and circular polarizations,

respectively. Though CP–even, the asymmetry Alin can serve as a powerful tool nevertheless to probe CP–violating

2With one phase φA, the complex mixing parameter X obeys the relation X(2π − φA) = X∗(φA), implying all CP–even quantities
symmetric and all CP–odd quantities anti–symmetric about π.
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admixtures to the Higgs states since |Alin| < 1 requires both Sγ
i and P γ

i non-zero couplings. A more direct probe of

CP–violation due to H/A mixing is provided by the CP–odd (and also CPT̃–odd) asymmetry Alin.

Figure 2: The φA dependence of the CP–even and CP–odd correlators, Alin (left panel) and Ahel (center panel), at the poles

of H2 and H3, respectively, and the γγ energy dependence (right panel) of the correlators, Alin,hel, for φA = 3π/4 in the

production process γγ → Hi in the limit in which H/A mixing is the dominant CP–violating effect. The same parameter set

as in Fig. 1 is employed. The vertical lines on the right panel mark positions of the two mass eigenvalues, MH3
and MH2

.

Fig. 2 show the φA dependence of the asymmetries Alin and Ahel at the poles of H2 and of H3, respectively, for the

same parameter set as in Fig. 1 and with the common SUSY scale MQ̃3
= Mt̃R

= MS = 0.5 TeV for the soft SUSY

breaking top squark mass parameters. By varying the γγ energy from below MH3
to above MH2

, the asymmetries,

Alin (blue solid line) and Ahel (red dashed line), vary from −0.39 to 0.34 and from −0.29 to 0.59, respectively, as

demonstrated on the right panel of Fig. 2 with φA = 3π/4, a phase value close to resonant CP–mixing.

(b) A second observable of interest is the polarization of the top quarks in Hi decays produced by γγ fusion or

elsewhere in various production processes at an e+e− linear collider and LHC H2,3 → tt̄. Even if the H/Att couplings

are [approximately] CP–conserving, the complex rotation matrix C may mix the CP–even H and CP–odd A states

leading to CP–violation. In the production–decay process γγ → Hi → tt̄, two CP–even and CP–odd correlators

between the transverse t and t̄ polarization vectors s⊥, s̄⊥

C‖ = 〈s⊥ · s̄⊥〉 and, C⊥ = 〈p̂t · (s⊥ × s̄⊥)〉 (15)

can be extracted from the azimuthal–angle correlation between the two decay planes t → bW+ and t̄ → b̄W− [13].

Fig. 3 shows the φA dependence of the CP–even and CP–odd asymmetries, C‖ and C⊥, at the poles of H2 and

of H3, left and center panels respectively. If the invariant tt̄ energy is varied throughout the resonance region, the

correlators C‖ (blue solid line) and C⊥ (red dashed line) vary characteristically from −0.43 to −0.27 [non–uniformly]

and from 0.84 to −0.94, respectively, as shown in the right panel of Fig. 3.

Figure 3: The φA dependence of the CP–even and CP–odd correlators, C‖ (left panel) and C⊥ (center panel), at the pole of H2

and H3 and the invariant tt̄ energy dependence (right panel) of the correlators C‖,⊥ for φA = 3π/4 in the production–decay

chain γγ → Hi → tt̄. [Same SUSY parameter set as in Fig.2.]
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4. CONCLUSIONS

Exciting mixing effects can occur in the supersymmetric Higgs sector if CP–noninvariant interactions are present.

In the decoupling regime these effects can become very large, leading to interesting experimental consequences. Higgs

formation in γγ collisions with polarized beams proves particularly interesting for observing such effects. However,

exciting experimental effects are also predicted in such scenarios for tt̄ final–state analyses in decays of the heavy

Higgs bosons at LHC and in the e+e− mode of linear colliders.

Detailed experimental simulations would be needed to estimate the accuracy with which the asymmetries presented

here can be measured. Though not easy to measure, the large magnitude and the rapid, significant variation of the

CP–even and CP–odd asymmetries through the resonance region with respect to both the phase φA and the γγ

energy would be a very interesting effect to observe in any case.
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