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We review two commonly used approximate treatments of beamstrahlung at lepton colliders. We discuss the appli-

cability of those approximations and show that they are bound to fail at very high energy e+e− colliders such as

CLIC. We model the beamstrahlung effects at CLIC by an exact numerical solution to the evolution equation for

beamstrahlung and compare to the two approximations. We also discuss the impact of beamstrahlung on precision

measurements of new physics parameters. As an illustration we consider Kaluza-Klein lepton production in Universal

Extra Dimensions and study the deterioration of the endpoint lepton energy spectrum caused by beamstrahlung.

1. INTRODUCTION

The fixed center of mass energy ECM is a celebrated virtue of lepton colliders. In contrast to hadron colliders,
where the parton-level ECM varies from event to event, the additional kinematic constraint allows for a number of
new measurements. Some well-known examples are: the presence of sharp endpoints in the distributions of various
kinematic observables, the possibility of threshold scans, measurements of the missing mass, the angular distributions
at production, etc. The availability of all these new experimental tools allows for precise determination of new physics
parameters and is the primary motivation for pursuing the construction of a next generation lepton collider.

One should keep in mind, however, that in reality a fraction of the beam energy is always lost due to the effects
of beamstrahlung and bremsstrahlung, so that the true center of mass energy in the event is often displaced from
its nominal value. The purpose of the present note is to investigate to what extent these effects can represent a
problem for precision measurements of new physics parameters at very high energy e+e− colliders such as CLIC. To
this end, in Sec. 2 we first review the two commonly used parametrizations of beamstrahlung. Then in Sec. 3 we
discuss the applicability of those approximations for lepton colliders with sub-TeV ECM (such as ILC) as well as
ECM in the multi-TeV range (such as CLIC). We find that the latter case falls outside the range of validity of the
two approximations, and an exact treatment of beamstrahlung effects is required. We solve numerically the evolution
equation for beamstrahlung using the exact expression for the Sokolov-Ternov transition probability (see Sec. 2). In
Sec. 4 we consider the example of Kaluza-Klein muon production in Universal Extra Dimensions (UED) and use
our numerical results from Sec. 3 to investigate the deterioration of the endpoint lepton energy spectrum caused by
beamstrahlung. The same analysis can be readily applied to smuon production in supersymmetry as well.

2. ANALYTICAL APPROACHES TO BEAMSTRAHLUNG

For physics purposes we need to know the energy distribution ψe(x, t) of the colliding electrons, where x ≡ E/E0

is the electron energy as a fraction of the nominal beam energy E0. Neglecting electrons from pair-production, the
normalization condition on ψe is ∫ 1

0

dxψe(x, t) = 1. (1)
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Figure 1: (a) F (x, x′) corresponds to the source and F (x′′, x) to the sink for the evolution of the spectral function ψe(x, t).

(b) The final energy of an electron results from a convolution of beamstrahlung and bremsstrahlung (see Sec. 2.3).

Assuming that the emission of a photon takes place on an infinitesimally short time scale, the interference between
successive radiation processes is negligible and the evolution of the electron spectral function ψe is described by the
following rate equation (see Figure 1a):

∂ψe(x, t)
∂t

= −
∫ x

0

dx′′F (x′′, x)ψe(x, t) +
∫ 1

x

dx′F (x, x′)ψe(x′, t) . (2)

Here F (x, x′) is the spectral function of radiation, i.e. F (x, x′) is the transition probability (per unit time) for an
electron at x′ to move into the energy interval (x, x + dx). Obviously, F (x, x′) = 0 if x ≥ x′. Pulling out ψe(x, t),
which is independent of x′′, outside the x′′ integral, leaves the integral quantity

ν(x) =
∫ x

0

dx′′F (x′′, x) , (3)

which represents the average number of photons radiated per unit time by the electron with an instantaneous energy
x. The transition probability F (x, x′) derived by Sokolov and Ternov [1] is given by

F (x, x′) =
νclκ

xx′
f(ξ, η) , (4)

f(ξ, η) =
3
5π

1
1 + ξη

[∫ ∞

η

duK5/3(u) +
ξ2η2

1 + ξη
K2/3(η)

]
, (5)

where ξ ≡ 3x′Υ/2, η = κ (1/x− 1/x′) and the constant κ ≡ 2/(3Υ) is introduced for convenience. Kν is the modified
Bessel function and νcl is the number of photons per unit time calculated by the classical theory of radiation. By
definition, this is also the limit of ν(x) for x→ 0:

νcl ≡ ν(x = 0) =
5

2
√

3
α2

reγ0
Υ , (6)

where re is the classical electron radius, α is the fine structure constant, γ0 = E0/(mec
2) and the dimensionless

Lorentz invariant parameter

Υ =
5
6

r2eγ0N

ασz(σx + σy)
(7)

has a value specific to any given collider, as it depends on the total number of particles N in a gaussian bunch and
the rms sizes σx, σy, σz of the gaussian beam.

2.1. Yokoya-Chen (YC) approximation

It is clear that the Sokolov-Ternov (ST) spectral function (4) is too complicated to allow a general analytic solution
to Eq. (2). Therefore, one has to resort to some kind of an approximation. In 1989 Yokoya and Chen [2, 3] suggested
the following simple approximation to (5):

f(ξ, η) ≈ 1
Γ(1/3)

η−2/3e−η , (8)
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with the additional assumption

ν(x) =
∫ x

0

dx′′F (x, x′′) ≈ νcl = constant. (9)

One can then solve the rate equation (2) by Laplace transformation and obtain an analytical solution:

ψ(x, t) = e−νclt

[
δ(1 − x) +

e−ηx

1 − x
h(η1/3

x νclt)
]
, (10)

where ηx ≡ κ(1/x− 1) and

h(u) =
1

2πi

∫ λ+i∞

λ−i∞
exp(up−1/3 + p)dp =

∞∑
n=1

un

n!Γ(n/3)
(11)

with λ > 0 and 0 ≤ u ≤ ∞. The first term in Eq. (10) represents the electron population unaffected by radiation.
The n-th term in the Taylor expansion of the second term in (10) corresponds to the process of n-photon emission.
The final electron energy distribution ψe(x) due to beamstrahlung is obtained by suitable time averaging of the
time-dependent solution (10) to account for the duration of bunch overlap, for example:

ψe(x) ≡ 2
l

∫ l/2

0

dt ψe(x, t) =
1
Ncl

[
(1 − e−Ncl)δ(1 − x) +

e−ηx

1 − x
h̄(x)

]
, (12)

where l = 2
√

3σz is the effective length of the incoming bunch and Ncl = νcll/2 is the average number of photons
radiated per particle during the entire collision of the e+e− beams. The function h̄(x) in the second term is

h̄(x) =
∞∑

n=0

η
n/3
x

n!Γ(n/3)
γ(n+ 1, Ncl) , (13)

where γ(n, x) is the incomplete Gamma function

γ(n, x) =
∫ x

0

dy e−yyn−1 . (14)

The resulting solution (12) is in good agreement with ABEL simulation data at least up to Υ ∼ 0.44 [3].

2.2. Consistent Yokoya-Chen (CYC) approximation

Later on, M. Peskin pointed out [4] that the two assumptions (8) and (9) behind the YC approximation are
incompatible with the normalization condition (1) of the energy spectral function. To rectify the problem, Peskin
proposed the so-called “consistent Yokoya-Chen” approximation as an alternative to (8):

f̃(ξ, η) =
x′

x

1
Γ(1/3)

η−2/3e−η . (15)

The rate equation (2) can then be solved in exactly the same way and the resulting analytic solution is

ψe(x) = e−Nγ

(
δ(x− 1) +

e−ηx

x(1 − x)
h(Nγη

1/3
x )

)
, (16)

where Nγ =
√

3σzνcl(1 + Υ2/3)−1/2. This solution not only preserves the probability sum rule (1) but also agrees
with Guinea Pig simulation for Υ = 0.104 (NLC500) and Υ = 0.299 (NLC1000) and numerically is not very different
from the YC solution (12) for Υ 
 1 [4]. However, for large Υ, the two solutions are significantly different, see Fig. 2
and Sec. 3 below.
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Figure 2: (a) Electron energy distributions due to beamstrahlung (dot-dashed, red), ISR (dashed, blue) and their convolution

(solid), for an ILC with the parameters as shown. The YC and CYC approximations (12) and (16) are almost identical in

this case. (b) Electron energy distributions due to beamstrahlung (dot-dashed) and ISR (dashed, green), for CLIC with the

shown parameters. The YC (CYC) solution is shown in red (blue).

Figure 3: (a) The transition probability F (x, 1) as a function of x, using the exact expression (5) or the approximations (8)

and (15), for two different values of Υ. (b) The function ν(x) plotted for various values of Υ.

2.3. Convolution with bremsstrahlung

Another source of electron energy losses is bremsstrahlung, or initial state radiation (ISR), parametrized with its
own energy distribution function ψISR [5]. The probability to end up with an electron of energy x is a convolution
of ISR and beamstrahlung (see Figs. 1b and 2a):

ψISR ∗ ψe = ψe ∗ ψISR =
∫ 1

0

dydz ψISR(y)ψe(z)δ(x− yz) =
∫ 1

x

dz

z
ψISR

(x
z

)
ψe(z) . (17)

3. VALIDITY RANGE OF THE APPROXIMATE SOLUTIONS

In order to test the validity of the YC and CYC approximations, in Fig. 3a we plot the transition probability
F (x, 1) as a function of x, using the exact expression (5) or the approximations (8) and (15), for two different values
of Υ. First of all, we notice that as Υ gets large, one enters the quantum regime of radiation, where emitting hard
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Figure 4: (a) Muon energy spectrum from KK muon production in UED at an e+e− collider with ECM = 500 GeV and

Υ = 0.107. The left (right) box-like distribution is due to SU(2)-singlet (SU(2)-doublet) µ±
1 production. The dotted lines

ignore the beamstrahlung, with the effects from ISR shown in green. The red (blue) lines include beamstrahlung according to

the YC (CYC) approximation. (b) The same as (a), but for R−1 = 500 GeV at CLIC with ECM = 3000 GeV and Υ = 3.81.

photons becomes more and more likely. The large tail at low x appearing in the case of CLIC could become an
annoying spoiler for physics studies — an issue we will look at in more detail in the next Section. We also see that
fixing the normalization problem of the YC approximation comes at a price: the improved CYC approximation is
numerically further away from the exact ST spectral function (4) and the discrepancy becomes more pronounced at
large Υ. Conversely, while the YC approximation does a better job in approximating (4), it not only suffers from the
normalization problem, but also relies on the approximation ν(x) ≈ νcl = const, which fails at large Υ, as evidenced
in Fig. 3b. There we plotted ν(x) and the corresponding νcl for different values of Υ. We see that for small Υ the
ν(x) function (3) is pretty constant and the YC approximation is valid, but for the larger Υ values which are relevant
at CLIC, ν(x) is far from being a constant, and the YC approximation will fail.

Fig. 3 reveals that in order to get a reliable parametrization of beamstrahlung for large Υ (i.e. at very high energy
e+e− colliders such as CLIC), we need to improve on the two existing approximations. We tried, but were unable
to find a better approximation to (5), which would still allow for an analytic solution in closed form. We therefore
resorted to a numerical solution of the original rate equation (2) with the full ST formula (4). This solution was then
used for the physics study presented in Sec. 4.

4. MUON ENERGY SPECTRUM FROM KK-MUON PRODUCTION

In order to study the effect of beamstrahlung on physical observables, we consider the production of level 1 Kaluza-
Klein muons µ±

1 in UED [6, 7], which then decay to the lightest KK particle (LKP), in this case the KK partner γ1 of
the photon. The signature is two opposite sign muons and missing energy, which is analogous to smuon production
in supersymmetry models with stable neutralino LSP. At hadron colliders, the two scenarios can be confused [7–9],
but lepton colliders allow for an easy and straightforward discrimination [9].

Two important observables are the lower, Emin, and upper, Emax, endpoints of the muon energy spectrum (see
Fig. 4). They can be used to extract the masses of the particles involved in the decay as follows:

Emax/min =
1
2
Mµ1

(
1 − M2

γ1

M2
µ1

)
γ(1 ± β) , (18)

where Mµ1 and Mγ1 are the KK muon and LKP masses, respectively, γ = 1/(1 − β2)1/2, and β is the µ1 boost.
Fig. 4a confirms that at low ECM the effects from beamstrahlung are rather small, and furthermore, the YC and
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Figure 5: (a) Electron energy distributions resulting from the numerical solution (green) or the YC (red) and CYC (blue)

approximations, for Υ = 3.81 and Υ = 0.107. (b) The same as Fig. 4b, but including the exact solution for beamstrahlung.

CYC approximations are in agreement. However, Fig. 4b reveals that at higher energy colliders, beamstrahlung
tends to wash out the endpoint, the degree of deterioration being quite sensitive to the approximation used.

Since we already expect neither approximations to be reliable at large ECM (where Υ is also large), we solved
Eq. (2) numerically. The result, together with the YC and CYC approximations, is shown in Fig. 5a, for Υ =
0.107 (TESLA500) and Υ = 3.81 (CLIC3000) [10]. Notice how the improved CYC approximation considerably
overestimates the effect of beamstrahlung at low x. We then implemented the numerical solution in the CompHEP
event generator [11]. The resulting true muon energy distribution including both types of beam energy losses is
shown in Fig. 5b. We see that beamstrahlung still degrades the kinematic endpoint, although not as much as the
CYC and YC approximations would suggest.
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