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We evaluate O(αbαs) corrections in the MSSM Higgs boson sector, including an analysis of the renormalization in

the bottom/scalar bottom sector. For µ < 0 the genuine two-loop corrections to the mass of the lightest Higgs boson

mass can amount up to 3 GeV. Different renormalization schemes are applied and numerically compared. Likewise the

residual dependence on the renormalization scale is investigated. This allows to determine the remaining theoretical

uncertainties from unknown higher-order corrections at O(αbα2
s) for different regions of the MSSM parameter space.

1. INTRODUCTION

A crucial prediction of the Minimal Supersymmetric Standard Model (MSSM) [1] is the existence of at least one

light Higgs boson. Direct searches at LEP have already ruled out a considerable fraction of the MSSM parameter

space [2, 3], and the forthcoming high-energy experiments at the Tevatron, the LHC, and the International Linear

Collider (ILC) will either discover a light Higgs boson or rule out Supersymmetry (SUSY) as a viable theory for

physics at the weak scale. Furthermore, if one or more Higgs bosons are discovered, bounds on their masses and

couplings will be set at the LHC [4, 5]. Eventually the masses and couplings will be determined with high accuracy

at the ILC [6–8]. Thus, a precise knowledge of the dependence of masses and mixing angles in the MSSM Higgs

sector on the relevant supersymmetric parameters is of utmost importance to reliably compare the predictions of the

MSSM with the (present and future) experimental results. Even nowadays a precise prediction of the lightest MSSM

Higgs boson mass is important to set solid bounds on the MSSM parameter space [9, 10].

The status of the available results for the higher-order contributions to the neutral CP-even MSSM Higgs boson

masses has been summarized in Refs. [11–13]. In particular two-loop contributions to the leading one-loop corrections

involving the top and bottom Yukawa couplings (with αt ≡ h2
t /(4π), αb ≡ h2

b/(4π), ht,b being the superpotential top

or bottom coupling) have been evaluated. Corrections from the bottom/sbottom sector can also give large effects, in

particular for large values of tanβ, the ratio of the two vacuum expectation values, tanβ = v2/v1, and large values

of µ, the supersymmetric Higgs mass parameter. The leading strong corrections at O(αbαs) have been derived in

Ref. [14] (in the limit tanβ → ∞) and in Ref. [15] (for arbitrary tanβ). In the (s)bottom corrections the all-order

resummation of the tanβ-enhanced terms, O(αb(αs tanβ)n), is also performed [16, 17]. Furthermore a full effective

potential two-loop calculation exists [18], however, no public code is available.

The potentially large size of corrections from the b/b̃ sector makes it desirable to investigate the corresponding

two-loop corrections, including the applied renormalization. An inconvenient scheme can give rise to artificially

large corrections, whereas a convenient scheme absorbs the dominant contributions into the one-loop result, and

higher-order corrections remain small. The comparison of different schemes (without artificially enhanced correc-

tions) and the renormalization scheme dependence give an indication of the possible size of missing higher-order

terms of O(αbα
2
s).
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2. THE MSSM HIGGS SECTOR AND RENORMALIZATION

The Higgs sector of the MSSM [19] comprises two neutral CP-even Higgs bosons, h and H (mh < mH), the CP-odd

A boson (throughout this paper we assume that CP is conserved) and two charged Higgs bosons, H±.

In the Feynman-diagrammatic (FD) approach, the higher-order corrected Higgs boson masses, Mh and MH , are

derived as the poles of the h, H-propagator matrix, i.e. by solving the equation

[
p2 − m2

h,tree + Σ̂hh(p2)
] [

p2 − m2
H,tree + Σ̂HH(p2)

]
−

[
Σ̂hH(p2)

]2

= 0 . (1)

The renormalized self-energies, Σ̂s, can be expanded according to the one-, two-, . . . loop-order contributions,

Σ̂s(p
2) = Σ̂(1)

s (p2) + Σ̂(2)
s (p2) + · · · , s = hh, hH, HH . (2)

The leading two-loop corrections from the b/b̃ sector are the O(αs) corrections to the dominant one-loop contributions

of O(αb). They are obtained for zero external momentum and neglecting the gauge couplings, see Ref. [15] for further

details. This approach is analogous to the way the leading one- and two-loop contributions in the top/stop sector

have been obtained (see e.g. Ref. [20]). Details about the renormalization in the MSSM Higgs sector can be found

in Ref. [15].
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Figure 1: Some generic two-loop diagrams for the Higgs-boson self-energies (φ = h, H,A; i, j, k, l = 1, 2). Similar diagrams

arise for the tadpole contributions.

φ φ

b b

b

φ

φ

b̃i

b̃j

φ φ

b̃ib̃j

φ φ

b̃i

Figure 2: Some generic one-loop diagrams with counterterm insertion for the Higgs-boson self-energies (φ = h, H,A), i, j, k =

1, 2). Similar diagrams arise for the tadpole contributions.

The genuine two-loop Feynman diagrams to be evaluated for the Higgs boson self-energies, Σ̂hh,hH,HH , are shown

in Fig. 1. The diagrams with subloop renormalization are depicted in Fig. 2. The diagrams and the corresponding

amplitudes have been generated with the package FeynArts [21, 22]. The further evaluation has been done using the

program TwoCalc [23].

We now turn to the renormalization in the scalar-quark sector, entering via the diagrams depicted in Fig. 2. Since

the two-loop self-energies are evaluated at O(αt,bαs) it is sufficient to determine the counterterms induced by the

strong interaction only. The tree-level relations and further details about our notation can be found in Ref. [15]. In

the following mq̃i
, i = 1, 2 denotes the two mass eigenvalues of the stop (q = t) and sbottom (q = b) sector. The

corresponding unitary diagonalization matrix is denoted as Uq̃ij
, i, j = 1, 2.

2.1. Renormalization of the top and scalar-top sector

The t/t̃ sector contains four independent parameters: the top-quark mass mt, the stop masses mt̃1
and mt̃2

, and

either the squark mixing angle θt̃ or, equivalently, the trilinear coupling At. Accordingly, the renormalization of
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this sector is performed by introducing four counterterms that are determined by four independent renormalization

conditions. The following renormalization conditions are imposed (see also Ref. [24]).

(i) On-shell renormalization of the top-quark mass

(ii) On-shell renormalization of the stop masses

(iii) The counterterm for the mixing angle, θt̃: δθt̃ =
[
Re Σt̃12

(m2
t̃1

) + Re Σt̃12
(m2

t̃2
)
]
/

[
2(m2

t̃1
− m2

t̃2
)
]

.

Having already specified δθt̃, the At counterterm cannot be defined independently but follows from the relation

sin 2θt̃ = [2mt(At − µ cotβ)] /[m2
t̃1
− m2

t̃2
] .

2.2. Renormalization of the bottom and scalar-bottom sector

Because of SU(2)-invariance the soft-breaking parameters for the left-handed stops and sbottoms are identical,

and thus the t̃ and b̃ masses are not independent but connected via the relation

cos2 θb̃m
2
b̃1

+ sin2 θb̃m
2
b̃2

= cos2 θt̃m
2
t̃1

+ sin2 θt̃m
2
t̃2

+ m2
b − m2

t − M2
W cos(2β) . (3)

Since the t̃ masses have already been renormalized on-shell, only one of the b̃ mass counterterms can be determined

independently. In the following, the b̃2 mass is chosen as the pole mass, yielding δm2
b̃2

= Re Σb̃22
(m2

b̃2
), whereas the

counterterm for mb̃1
is determined as a combination of other counterterms, according to

δm2
b̃1

=
1

cos2 θb̃

(
cos2 θt̃δm

2
t̃1

+ sin2 θt̃δm
2
t̃2
− sin2 θb̃δm

2
b̃2

− sin 2θt̃(m
2
t̃1
− m2

t̃2
)δθt̃

+ sin 2θb̃(m
2
b̃1

− m2
b̃2

)δθb̃ − 2mt δmt + 2mb δmb

)
. (4)

Consequently, the numerical value of mb̃1
does not correspond to the pole mass. The pole mass can be obtained from

mb̃1
via a finite shift of O(αs) (see e.g. Ref. [25]).

There are three more parameters with counterterms to be determined: the b-quark mass mb, the mixing angle θb̃,

and the trilinear coupling Ab. They are connected via

sin 2θb̃ = [2mb(Ab − µ tanβ)] /[m2
b̃1

− m2
b̃2

] , (5)

which reads in terms of counterterms

2 cos 2θb̃ δθb̃ = sin 2θb̃

δmb

mb

+
2mb δAb

m2
b̃1

− m2
b̃2

− sin 2θb̃

δm2
b̃1

− δm2
b̃2

m2
b̃1

− m2
b̃2

. (6)

Only two of the three counterterms, δmb, δθb̃, δAb can be treated as independent, which offers a variety of choices.

In the following, four different renormalization schemes, collected in Tab. I, will be investigated. Details about the

four schemes can be found in Ref. [15].

Table I: Summary of the four renormalization schemes for the bottom quark/squark sector. Blank entries indicate dependent

quantities. For more details see Ref. [15].

scheme m2

b̃2
mb Ab θb̃

analogous to t/t̃ sector (“mb OS”) on-shell on-shell on-shell

DR bottom-quark mass (“mb DR”) on-shell DR DR

DR mixing angle and Ab (“Ab, θb̃ DR”) on-shell DR DR

on-shell mixing angle and Ab (“Ab, θb̃ OS”) on-shell on-shell on-shell
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2.3. Resummation in the b/b̃ sector

The relation between the bottom-quark mass and the Yukawa coupling hb, which in lowest order reads mb =

hbv1/
√

2, receives radiative corrections proportional to hbv2 = hb tanβ v1. Thus, large tanβ-enhanced contribu-

tions can occur, which need to be properly taken into account. As shown in Refs. [16, 17] the leading terms of

O(αb(αs tanβ)n) can be resummed by using an appropriate effective bottom Yukawa coupling.

Accordingly, an effective bottom-quark mass, mDR,MSSM
b , is obtained by extracting its UV-finite tanβ-enhanced

contribution ∆mb (which enters through ΣbS
) and writing it as 1/(1 + ∆mb) into the denominator. In this way the

leading powers of (αs tanβ)n are correctly resummed [16, 17]. This yields

mDR,MSSM
b (µDR) = [mMS

b (MZ)bshift +
1

2
mb(Σ

fin
bL

(mb
2) + Σfin

bR
(mb

2)) + mb Σ̃fin
bS

(m2
b)]/[1 + ∆mb] , (7)

where Σ̃bS
≡ ΣbS

+ ∆mb denotes the non-enhanced remainder of the scalar b-quark self-energy at O(αs), and bshift

is given in by bshift ≡
[
1 + αs

π

(
4
3 − ln

(mMS

b )2

M2

Z

)]
. The tanβ-enhanced scalar part of the b-quark self-energy, ∆mb, is

given at O(αs) by

∆mb = −2/(3π)αs tanβ µ mg̃

m2
b̃1

m2
b̃2

log(m2
b̃2

/m2
b̃1

) + m2
b̃1

m2
g̃ log(m2

b̃1
/m2

g̃) + m2
g̃m

2
b̃2

log(m2
g̃/m2

b̃2
)

(m2
b̃1

− m2
g̃)(m

2
g̃ − m2

b̃2
)(m2

b̃2
− m2

b̃1
)

. (8)

We incorporate the effective bottom-quark mass of (7) into our one-loop results for the renormalized Higgs boson

self-energies. In this way the leading effects of O(αbαs) are absorbed into the one-loop result. We refer to the genuine

two-loop contributions, which go beyond this improved one-loop result, as “subleading O(αbαs) corrections” in the

following.

3. NUMERICAL RESULTS

For our numerical analysis we use the following parameters (if not indicated differently): mt = 174.3 GeV, mMS
b =

2.94 GeV, MA = 700 GeV, µ = −1000, tanβ = 50, MSUSY = 1000 GeV, Af = 2MSUSY, M2 = 2M1 = 100 GeV,

mg̃ = 1000 GeV, µDR = mt. Large values of tanβ and |µ| are chosen in order to illustrate possibly large effects in

the b/b̃ sector. The inclusion of all known corrections and the current experimental central top quark mass value of

mt = 178.0 GeV in our analysis would yield an increase in Mh of O(8 GeV) [11]. Therefore the mass values given in

our numerical analysis should not be viewed as predictions of Mh; they are rather illustrations of the αs-corrections

to the bottom Yukawa contributions at the two-loop level.

In Ref. [15] it has been shown that the “mb OS” scheme should be discarded. The reason for the problematic

behavior of this scheme is easy to understand. The renormalization condition in the “mb OS” scheme is a condition

on the sbottom mixing angle θb̃ and thus on the combination (Ab − µ tanβ). In parameter regions where µ tanβ is

much larger than Ab, the counterterm δAb receives a very large finite shift when calculated from the counterterm

δθb̃. This problem is avoided in the other renormalization schemes introduced in Tab. I, where the renormalization

condition is applied directly to Ab, rather than deriving δAb from the renormalization of the mixing angle.

In Fig. 3 it can be seen that the behavior of the subleading corrections in the three remaining renormalization

schemes strongly depends on the choice of mg̃. For mg̃
<∼ 1000 GeV all schemes lead to an increase of Mh from the

subleading O(αbαs) corrections. For mg̃
>∼ 1500 GeV, on the other hand, all schemes lead to a decrease, where the

size of the individual corrections also strongly varies with mg̃. Accordingly, the relative size of the corrections in

the different schemes also varies with mg̃. Corrections up to about 3 GeV are possible. The differences between the

three schemes are of O(2 GeV) for large mg̃. It should be noted that the effects of the higher-order corrections to

Mh do not decouple with large mg̃. The corrections at O(αtαs) [20] as well as O(αbαs) grow logarithmically in the

renormalization schemes that we have adopted.

The µDR variation is shown in Fig. 4. The leading contribution (the O(αtαs) result including resummation) is

shown as the dark shaded (black) band. The results including the subleading corrections in the “mb DR” scheme are
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Figure 3: Mh as a function of mg̃.

shown as a light shaded (red) band. It can be seen that the variation with µDR is strongly reduced by the inclusion

of the subleading contributions. The variation with µDR within the “mb DR” scheme is tiny for mg̃
<∼ 500 GeV, and

reaches ±2 GeV for large mg̃ values. Thus, the µDR variation causes a similar shift in Mh as the comparison between

the three renormalization schemes discussed above.

The comparison of the results in the different schemes that we have analyzed and the investigation of the renormal-

ization scale dependence give an indication of the possible size of missing higher-order corrections in the b/b̃ sector.

For µ > 0 (see Ref. [15]) the higher-order corrections from the b/b̃ sector (beyond O(αbαs)) appear to be sufficiently

well under control. For µ < 0, on the other hand, sizable higher-order corrections from the b/b̃ sector are possible.

The size of the individual corrections and also the difference between the analyzed schemes varies significantly with

the relevant parameters, µ, tanβ, mg̃ and MA. We estimate the uncertainty from missing higher-order corrections
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Figure 4: µDR dependence of Mh as a function of mg̃. The black area corresponds to the O(αtαs) result including resummation,

i.e. the result without the subleading two-loop O(αbαs) terms. The parameters are the same as in Fig. 3.
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in the b/b̃ sector to be about 2 GeV in this region of parameter space.

The results obtained will be implemented into the Fortran code FeynHiggs [11, 20, 26].
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