Radio Observations: Resolving the Structure and Energetics of GRB

Afterglows

Edo Berger Carnegie Observatories Princeton University

The Texas Symposium, Stanford 2004

Outline

<u>Radio Observations Primer:</u> Unique Information (size, energetics)

Calorimetry of the Explosion:

Tracing the total relativistic output of the engine

<u>Resolving the Afterglow with ISS & VLBI:</u> A direct measurement of relativistic expansion

Unique & Complementary Diagnostics

The Compactness Problems / Jets

Large energy release, γ -ray emission, short duration \rightarrow "fireball" (Cavallo & Rees 1978; Goodman, Pazynski 1986)

Pair opacity \rightarrow thermal GRB

Relativistic motion

The Energetics of Gamma-Ray Bursts

Frail et al. 2001; Berger et al. 2003; Bloom et al. 2003

Standard γ-ray energy reservoir for most GRBs
GRB rate (f_b⁻¹) ~ 100 times the observed rate

• Sub-energetic tail

GRB 030329 and "Sub-energetic" bursts

The radio afterglow requires a jet break at 10 days $\Rightarrow \theta_j = 17^\circ$

 $E_K \approx 8 \times 10^{50} \text{ erg}$

The optical afterglow indicates a jet break at 0.5 d $\Rightarrow \theta_i = 5^{\circ}$ $E_{\nu} \sim 5 \times 10^{49} \, {\rm erg}$ Berger et al. 2003 100 =lux (mJy) 10 15 GHz 22 GHz 44 GHz 10 100 1 -ISM Wind =lux (mJy) Jet break 10 4.9 GHz 8.5 GHz 10 10 Time Since Burst (days) Time Since Burst (days)

GRB 030329: A Two-Component Jet

Berger et al. 2003

The expected second jet break in the optical is observed (Matheson et al. 2003)

Energy injection: factor of 10 increase between 0.5 to 10 days (Granot et al. 2003)

<u>Two-component jet</u>: (Berger et al. 2003)
A narrow, ultra-rel. jet w/ low energy (optical/X-ray)
A wide, mildly-rel. jet carrying the bulk of the energy (>90%)

A Common Total Energy Scale

GRBs and XRFs have a standard total energy yield of a few 10^{51} erg (Γ >2), but the fraction coupled to Γ >100 varies widely.

GRB Calorimetry

When $M_{sw} \approx E_0/c^2$ the blastwave becomes non-relativistic and nearly spherical:

• Flattening

• $t_{\rm NR} \sim 65 \ (E_{\rm iso,52} / n_0)^{1/3} \ \rm days$

GRB Calorimetry

In the absence of optical/X-ray data the radius is unconstrained.

However:

$$E_e(r) + E_B(r) \le E_{ST}(r)/2$$
 since $E_{thermal} \sim E_{ST}/2$

Berger et al. 2004

Resolving the Afterglow

$$R_{,BM} R \sin \sim R/$$

$$1.6 \ 10^{17} E_{iso,52}/n_0^{-1/8} t_{d,1}/(1 \ z)^{5/8} \text{ cm}$$

$$18 \ E_{iso,52}/n_0^{-1/8} t_{d,2}^{5/8} \text{ as} \quad (030329)$$

$$6 \ E_{iso,52}/n_0^{-1/8} t_{d,2}^{5/8} \text{ as} \quad (z \sim 1)$$

$$R_{,ST} t^{2/5}$$

The main uncertainty is in the phase $t_j \rightarrow t_{NR}$: models range from relativistic lateral expansion to no lateral expansion

Resolving the Afterglow: Scintillation

The scintillation quenches as the source size increases

Resolving the Afterglow: VLBI

Proper motion: 0.10 ± 0.14 mas in 80 days Angular size: 65 ± 22 µas (5.7×10^{17} cm) @ 25 days

Resolving the Afterglow: VLBI

Conclusions

• Radio observations allow us to meaure the size of the afterglow and to trace the total relativistic output

• GRB 030329 was dominated by mildly relativistic ejecta; in some bursts the ultra-relativistic output is negligible; total energy nearly standard

• Radio calorimetry in the NR phase confirms that $E_{\rm rel} \approx 5 \times 10^{51}$ erg independent of beaming

• Radio scintillation confirms that GRBs have a size of about 5 µas at ~10 days, corresponding to $R \approx 1.5 \times 10^{17}$ cm & $v \sim 6c$

• VLBI observations of GRB 030329 provide the first direct measurement of the afterglow; probably requires significant side-ways expansion of the jet