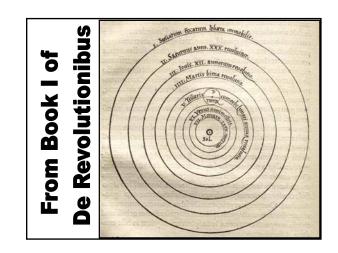
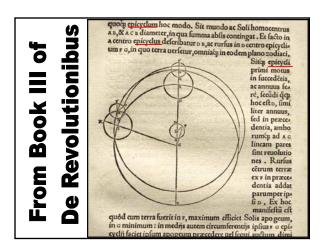
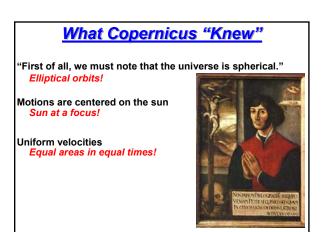
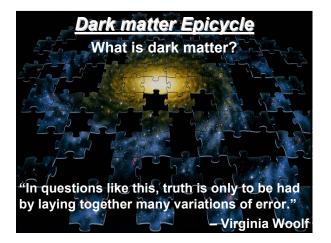

ACS, ACT, AGASA, AGN, AMI, APEX, AXPs, BaBar, BLLac, CAST, CDMS, CELESTE, CIV, CMB, CON-X, CP, CPT, DAMA, DEEP2, EeV, EUSO, GALEX, GLAST, GOODS, GR, GRBs, GPB, GRB, HII, HESS, HETE, HST, IGM, JWST, KKLT, LIGO, LISA, LOPES, LLR, MHD, MSW, NICMOS, PBHs, PREX, QPOs, QUAD, RXTE, SALT, SGRs, SDSS, SNeIc, SPT, SNeIa, SZE, 2dFGRG, SNeII, UHCRs, VLA, VLBI, WIMPS, WMAP, XMM, ...

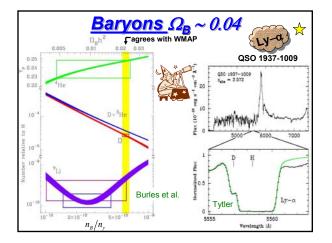


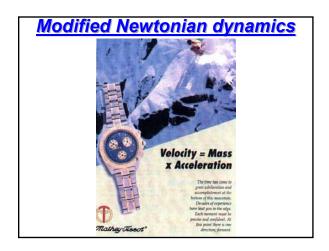


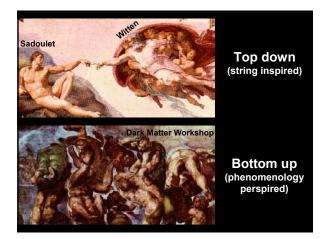


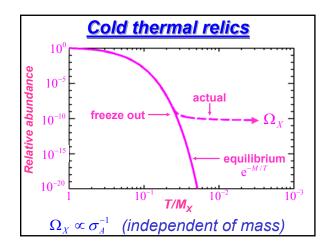


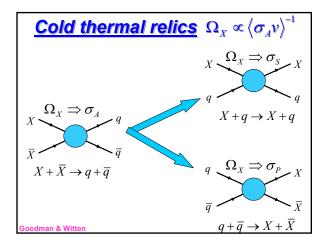
What Kepler "Knew"

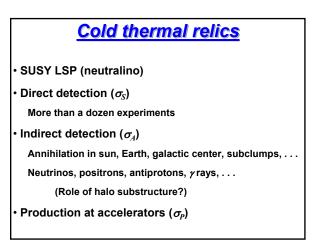

Gravity is an inverse-square force Kepler thought it was repulsive!

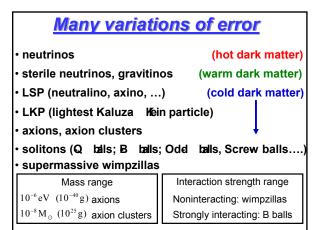

What We "Know" 1) The baryon asymmetry arises in the GUT or EWK era through B, CP, and nonequilibrium (Sakharov) *EWK doesn't seem to work....GUT scenarios not simple!* 2) The matter density is dominated by cold dark matter ... which we know nothing about! 3) The perturbations arise from inflationary dynamics

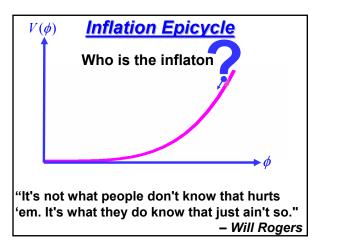

- 3) The perturbations arise from inflationary dynamics, which depends on particle physics at high energies ... which we know nothing about!
- 4) The universe is dominated by a cosmological term (dark energy, phantom energy, quintessence, polenta, cosmological constant, cosmo-illogical constant,) ... which we know less than nothing about!

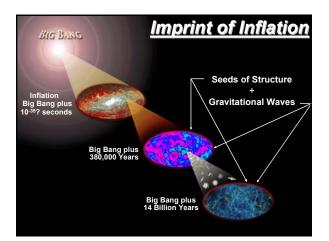


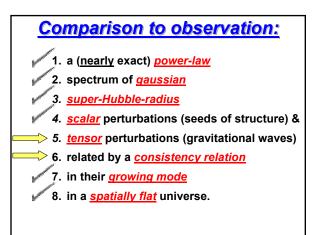







The nature of dark matter is a complex natural phenomenon.


The neutralino is a simple, elegant, compelling explanation.

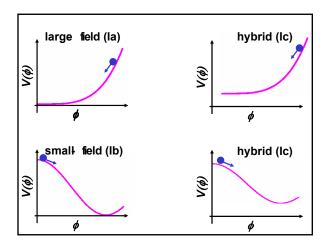

"For every complex natural phenomenon there is a simple, elegant, compelling, wrong explanation."

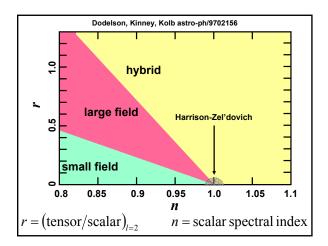
- Tommy Gold

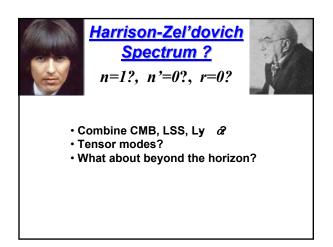
Models of inflation

old, new, pre wrned, chaotic, quixotic, ergodic, ekpyrotic, autoerotic, brane ges, bran ges, brain less faith bæsed, free bæsed, supersymmetric, supercilious, natural, supernatural, *au natural*, hybrid, low bed, white bread, one field, two field, left field, eternal, internal, infernal, self reproducing, self promoting, dilaton, dilettante,

<u>Complete list of known</u> <u>fundamental scalar fields</u> (from Particle Data Book):

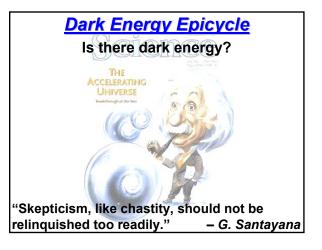

Model Classification*

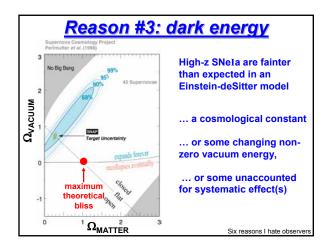

Type I: single field, slow roll models (or models that can be expressed as such)

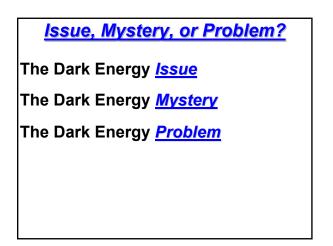

> Type Ia: large-field models Type Ib: small field models Type Ic: hybrid models

Type II: anything else (pre lig bang, ekpyrotic, warm, branes, brane gas, bran gas, etc.)

*Used for superstrings, supernovae, superconductors, ...

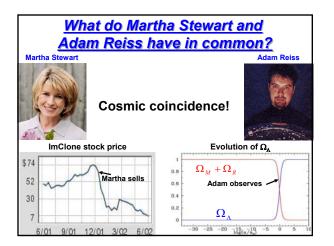


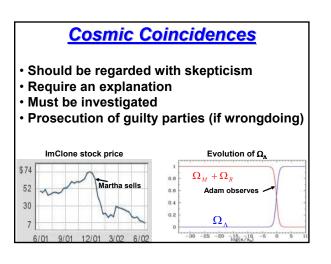

The nature of inflation is a complex natural phenomenon.


Single-field, slow-roll inflation is a simple, elegant, compelling explanation.

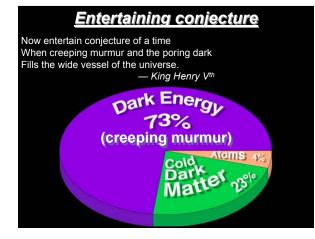
"For every complex natural phenomenon there is a simple, elegant, compelling, but wrong explanation."

- Tommy Gold





Problem: the magnitude of Λ **: The unbearable lightness of nothing:** $\rho_{\Lambda} \simeq 10^{-30} \text{ g cm}^{-3} \simeq (10^{-4} \text{ eV})^4 = (10^{-3} \text{ cm})^{-4}$ $\Lambda = 8\pi G \rho_{\Lambda} = (10^{29} \text{ cm})^{-2} = (10^{-33} \text{ eV})^2$ **Cosmo-illogical constant? Numerology:** $\rho_{V} = M_{Z}^{4} \exp(-2/\alpha)$ $\rho_{V} = M_{\text{SUSY}}^{8}/M_{Pl}^{4}$ $m_{v} = 10^{-3} \text{ eV}$ $R_{5} = 10^{-4} \text{ cm}$



Do we know there is dark energy?

Now entertain conjecture of a time When creeping murmur and the poring dark Fills the wide vessel of the universe.

- King Henry Vth

All evidence for creeping murmur (dark energy) is indirect!

SNIa
Age :
$$\int \frac{dz}{H(z)}$$

LSS

- We infer dark energy from time evolution of H.
- Observed time evolution of *H* does not fit Einstein-de Sitter.
- · Naïve cosmologists infer existence of dark energy!
- Could Friedmann equation be modified?

Do we know there is dark energy?

Now entertain conjecture of a time When creeping murmur and the poring dark Fills the wide vessel of the universe.

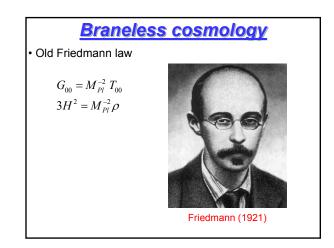
- King Henry Vth

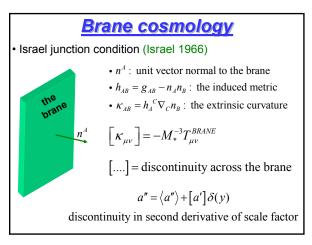
All evidence for creeping murmur (dark energy) is indirect!

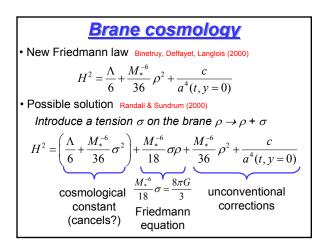
SNIa
Age :
$$\int \frac{dz}{H(z)}$$
LSS

- We infer dark energy from time evolution of H.
- Observed time evolution of *H* does not fit Einstein–de Sitter.
- Naïve cosmologists infer existence of dark energy!
- Could Friedmann equation be modified?

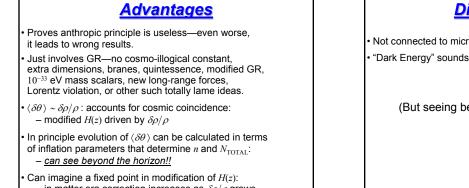
How do we sort it out? Something is established - ACDM too good to ignore – SNIa


H(z) not given by

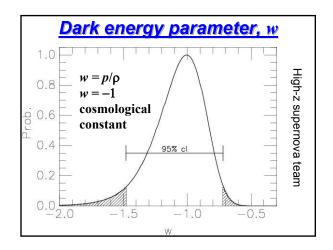

- Subtraction
- Age - Large-scale structure
- Einstein-de Sitter cosmological model
- Dark energy (rhs of Einstein equations)?
 - Is it "just" a cosmological constant?
 - If not cosmological constant, what is dynamics?
 - interpretation of w

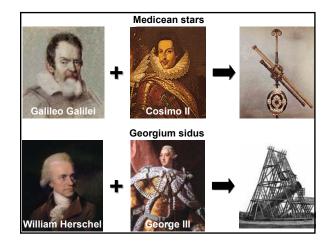

· Gravity (Ihs of Einstein equations)?

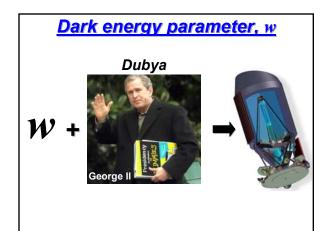
- Beyond Einstein (non-GR: branes,etc.)
- Just GR (inhomogeneities, etc.)


Modifying the left-hand side Friedmann equation modified today Freese & Lewis $H^2 = A\rho \left[1 + \left(\rho / \rho_{\text{cutoff}}\right)^{n-1}\right]$ Gravitational force law modified at large distance Deffayet, Dval & Gabadadze Five-dimensional at cosmic distances · Tired gravitons Gregory, Rubakov & Sibiryakov Dvali, Gabadadze & Porrati Gravitons metastable - leak into bulk • Gravity repulsive at distance $R \approx \text{Gpc}$ Csaki, Erlich, Hollowood & Terning • n=1 KK graviton mode very light, $m \approx (Gpc)^{-1}$ Kogan, Mouslopoulos, Papazoglou, Ross & Santiago • 3+1 Lorentz invariance broken in the IR Chung, Kolb & Riotto · ultraviolet modes of perturbations Räsänai · Infrared modes of inhomogeneities Kolb, Matarrese, Notari & Riotto

Infrared modes of inhomogeneities
• <i>H</i> (<i>z</i>) in a perturbed FLRW model:
$G_{\mu\nu}(\vec{x},t) = G_{\mu\nu}^{\text{FLRW}}(t) + \delta G_{\mu\nu}(\vec{x},t)$
$G_{00}^{\text{FLRW}}\left(t\right) + \delta G_{00}\left(\vec{x},t\right) = \kappa^{2} T_{00}\left(\vec{x},t\right)$
$3(\dot{a}/a)^2 = \kappa^2 \left(\left\langle \rho \right\rangle - \kappa^{-2} \left\langle \delta G_{00} \right\rangle \right)$
• $(\dot{a}/a)^2 \underline{is not} \kappa^2 \langle \rho \rangle / 3 \equiv H^2.$
• $G_{00} \propto \phi \nabla^2 \phi$
• Inflation produces φ such that today in our Hubble volume:
• $\langle \nabla^2 \phi \rangle / a^2 H^2 = 10^{-5}$
• $\langle \phi \rangle = 10^5$
$\cdot \left< \delta \! H \right> \propto \left< arphi \! abla \! abla^2 \! arphi \! \left< d \! H^2 \! \sim \mathcal{O}\!(1) ight.$
• observed <i>H</i> (<i>z</i>) explained by inhomogeneities
• there is no "dark energy" – Ω_{M} = 0.3 & flat universe

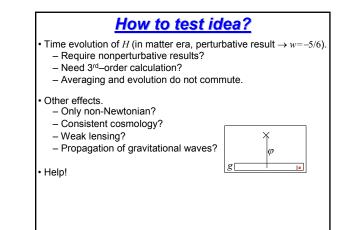

- in matter era correction increases as $\delta \rho / \rho$ grows
- increased expansion rate cuts off growth of $\delta \rho / \rho$
- perhaps can even predict Ω_M


Disadvantages


· Not connected to microphysics.

• "Dark Energy" sounds really cool.

(But seeing beyond the horizon is way cool!)



How do we sort it out?		
Nature's nice	Nature's a bitch	
• <u>Neutralino dark matter:</u>	• <u>Wimpzilla dark matter:</u>	
Direct detection	Only gravitational interactions	
Indirect detection	No direct or indirect detection	
Accelerator production	No accelerator production	
• <u>Inflation dynamics:</u>	• Inflation dynamics:	
Departure from H-Z	H-Z – no dynamics?	
Gravitational waves	Mass scale too small for tensors	
• <u>Dark energy:</u>	• <u>Dark energy:</u>	
w differs from -1	w = -1 – it's just a number!	

